
transitionMatrix Documentation
Release 0.5.0

Open Risk

Feb 22, 2023

Contents:

1 The transitionMatrix Library 3
1.1 Functionality . 4
1.2 Architecture . 4

2 Installation 5
2.1 Dependencies . 5
2.2 From PyPI . 5
2.3 From sources . 5
2.4 Using virtualenv . 5
2.5 File structure . 6
2.6 Other similar open source software . 6

3 Getting Started 7
3.1 The transitionMatrix components . 7
3.2 An end-to-end usage example from credit risk . 8
3.3 Further Resources . 10

4 Input Data Formats 13
4.1 Long Data Format . 13
4.2 Compact Form of Long Format . 14
4.3 Wide Data Format . 15
4.4 Other Formats . 15

5 Datasets 17
5.1 State Transition Data . 17
5.2 Transition Matrices . 18

6 Preprocessing 19
6.1 State Spaces . 19
6.2 Cohorts . 19

7 Credit Ratings 21
7.1 Predefined Rating Scales . 21
7.2 Withdrawn Ratings . 23
7.3 Credit Curves . 24

8 Estimation 25

i

8.1 Estimator Types . 25
8.2 Estimation Examples . 26

9 Post-processing 29
9.1 Basic Operations . 29
9.2 Working with an actual matrix . 31
9.3 Multi-Period Transitions . 32
9.4 Visualization . 32

10 Data Generators 41
10.1 Data Generation Examples . 41

11 Federation 43
11.1 Credit Rating Ontology . 43

12 Usage Examples 45
12.1 Python Scripts . 45
12.2 Jupyter Notebooks . 46
12.3 Open Risk Academy Scripts . 47

13 API 49
13.1 transitionMatrix Package . 49
13.2 transitionMatrix Subpackages . 49

14 Testing 53
14.1 Running all the examples . 53
14.2 Test Suite . 54

15 Roadmap 55
15.1 0.5 . 55
15.2 0.4.X . 55

16 Todo List 57
16.1 Core Architecture and API . 57
16.2 Input Data Preprocessing . 57
16.3 Reference Data . 57
16.4 Transition Matrix Analysis Functionality . 57
16.5 Statistical Analysis Functionality . 58
16.6 State Space package . 58
16.7 Credit Rating Related . 58
16.8 Utilities . 58
16.9 Further Refactoring of packages . 58
16.10 Performance / Big data . 59
16.11 Documentation . 59
16.12 Releases / Distribution . 59

17 ChangeLog 61
17.1 v0.5.0 (21-02-2022) . 61
17.2 v0.4.9 (04-05-2021) . 61
17.3 v0.4.8 (07-02-2021) . 62
17.4 v0.4.7 (29-09-2020) . 62
17.5 v0.4.6 (22-05-2019) . 62
17.6 v0.4.5 (21-04-2019) . 62
17.7 v0.4.4 (03-04-2019) . 62
17.8 v0.4.3 (29-03-2019) . 63

ii

17.9 v0.4.2 (29-01-2019) . 63
17.10 v0.4.1 (31-10-2018) . 63
17.11 v0.4.0 (23-10-2018) . 63
17.12 v0.3.1 (21-09-2018) . 63
17.13 v0.3 (27-08-2018) . 63
17.14 v0.2 (05-06-2018) . 64
17.15 v0.1.3 (04-05-2018) . 64
17.16 v0.1.2 (05-12-2017) . 64
17.17 v0.1.1 (03-12-2017) . 64
17.18 v0.1.0 (11-11-2017) . 64

18 Indexes and tables 65

iii

iv

transitionMatrix Documentation, Release 0.5.0

transitionMatrix is a pure Python powered library for the statistical analysis and visualization of state transition phe-
nomena. It can be used to analyze any dataset that captures timestamped transitions in a discrete state space.

Use cases include applications in finance (for example credit rating transitions), IT (system state event logs) and more.

NB: transitionMatrix is still in alpha release / active development. If you encounter issues please raise them in
our github repository

Contents: 1

transitionMatrix Documentation, Release 0.5.0

2 Contents:

CHAPTER 1

The transitionMatrix Library

transitionMatrix is a pure Python powered library for the statistical analysis and visualization of state transition phe-
nomena. It can be used to analyze any dataset that captures timestamped transitions in a discrete state space.

3

transitionMatrix Documentation, Release 0.5.0

• Author: Open Risk

• License: Apache 2.0

• Development Website: Github

• Code Documentation: Read The Docs

• Mathematical Documentation: Open Risk Manual

• Chat: Open Risk Commons

• Training: Open Risk Academy

• Showcase: Blog Posts

1.1 Functionality

You can use transitionMatrix to:

• Estimate transition matrices from historical event data using a variety of estimators

• Characterise transition matrices (identify their key properties)

• Visualize event data and transition matrices

• Manipulate transition matrices (derive generators, perform comparisons, stress transition rates etc.)

• Access standardized Datasets for testing

• Extract and work with credit default curves (absorbing states)

• Map credit ratings using mapping tables

• More (still to be documented :-)

1.2 Architecture

• transitionMatrix provides intuitive objects for handling transition matrices individually and as sets (based on
numpy arrays)

• supports file input/output in json and csv formats

• it has a powerful API for handling event data (based on pandas and numpy)

• supports visualization using matplotlib

4 Chapter 1. The transitionMatrix Library

http://www.openriskmanagement.com
https://github.com/open-risk/transitionMatrix
https://transitionmatrix.readthedocs.io/en/latest/
https://www.openriskmanual.org/wiki/Category:Transition_Matrix
https://www.openriskcommons.org/c/open-source/transitionmatrix/15
https://www.openriskacademy.com/login/index.php
https://www.openriskmanagement.com/tags/transition-matrix/

CHAPTER 2

Installation

You can install and use the transitionMatrix package in any system that supports the Scipy ecosystem of tools

2.1 Dependencies

• TransitionMatrix requires Python 3 (currently 3.7)

• It depends on numerical and data processing Python libraries (Numpy, Scipy, Pandas).

• The Visualization API depends on Matplotlib.

• The precise dependencies are listed in the requirements.txt file.

• TransitionMatrix may work with earlier versions of python / these packages but it is not tested.

2.2 From PyPI

pip3 install transitionMatrix

2.3 From sources

Download the sources in your preferred directory:

git clone https://github.com/open-risk/transitionMatrix

2.4 Using virtualenv

It is advisable to install the package in a virtualenv so as not to interfere with your system’s python distribution

5

https://scipy.org/install.html

transitionMatrix Documentation, Release 0.5.0

virtualenv -p python3 tm_test
source tm_test/bin/activate

If you do not have pandas already installed make sure you install it first (this will also install numpy and other required
dependencies).

pip3 install -r requirements.txt

Finally issue the install command and you are ready to go!

python3 setup.py install

2.5 File structure

The distribution has the following structure:

| transitionMatrix/ Directory with the library source code
| -- model.py File with main data structures
| -- estimators/ Directory with the estimator methods
| -- statespaces/ Directory with state space objects and methods
| -- creditratings/ Directory with predefined credit rating structures
| -- generators/ Directory with data generator methods
| -- utils/ Directory with helper classes and methods
| -- examples/ Directory with usage examples
| ---- python/ Examples as standalone python scripts
| ---- notebooks/ Examples as jupyter notebooks
| -- datasets/ Directory with a variety of datasets useful for getting
→˓started
| -- tests/ Directory with the testing suite

2.6 Other similar open source software

• etm, an R package for estimating empirical transition matrices

• msSurv, an R Package for Nonparametric Estimation of Multistate Models

• msm, Multi-state modelling with R

• mstate, competing risks and multistate models in R

• lifelines, python survival package

6 Chapter 2. Installation

CHAPTER 3

Getting Started

3.1 The transitionMatrix components

The transitionMatrix package includes several components (organized in sub-packages) providing a variety of func-
tionality for working with state transition phenomena. The overall organization and functionality is summarized in the
following graphic:

The library is structured in a modular way: users may mix and match the various components to meet their own needs.
The main workflow can be captured in the standard pre-processing, modelling and post-processing stages:

• Preprocessing stage

• Estimation stage

7

transitionMatrix Documentation, Release 0.5.0

• Post-processing stage

An secondary segmentation that is important to keep in mind is between general functionality that is relevant to general
data about state transitions and more specific domains with more specific conventions and needs. At present the only
specific domain concerns credit ratings.

Here we will dive straight-in into using transitionMatrix going a concrete (and typical) example using historical credit
rating transitions. Further resources and links to more detailed and specific usage are available at the end of this
section. People who are not at all familiar with the machinery of transition matrices might want to start with Basic
Operations.

3.2 An end-to-end usage example from credit risk

In order to give a quick introduction to the package we discuss here a concrete and end-to-end example of using transi-
tionMatrix that is drawn for the credit ratings space. The example does not cover all functionality, but it demonstrates
the core workflow.

We will use the data set “rating_data.csv” that is available in Datasets directory. The code snippets discussed here are
all from the script <examples/python/estimate_matrix.py>

3.2.1 Step 1: Loading the data

Data loading is best done via pandas dataframes:

data = pd.read_csv('../../datasets/rating_data.csv')
print(data.head())

CustomerId Date Rating RatingNum
0 1 30-05-2000 CCC+ 7
1 1 31-12-2000 B+ 6
2 2 21-05-2003 B+ 6
3 3 30-12-1999 BB+ 5
4 3 30-10-2000 B+ 6

We see that there is just enough metadata in the csv header to get an impression of how the data set captures transitions:

• Each entity is identified by an integer (First column: CustomerId)

• State measurements / transitions are observed at dates (in the DD-MM-YYYY format) (Second column: Date)

• There is an implied credit rating scale using symbols ‘B+, BB+’ etc (Third column: Rating)

• The rating scale is also expressed as integers (Fourth column: RatingNum)

Note: There are several important points we need to clarify before we can confidently extract information from this
dataset and (ultimately) estimate a transition matrix. For example:

• Do we understand the column labels or do we need additional (metadata)

• What is the observation window?

• Are the dates indicating a measurement (including no change) or a changed state?

• Are all possible transitions observed in the sample?

• Are all data provided consistent?

• Etc

8 Chapter 3. Getting Started

https://www.openriskmanual.org/wiki/Credit_Rating

transitionMatrix Documentation, Release 0.5.0

Some of those questions maybe answerable with the tools offered by transitionMatrix but it is always the responsibility
of the data scientist to make sure they are correctly interpreting the data and using the tools accordingly! The

3.2.2 Step 2: Understanding the data format

Our first task is to identify which data format is closest for us to use. In Input Data Formats we see that what we have
looks closest to a Compact Form of Long Format with the temporal information in String Dates.

3.2.3 Step 3: Data cleaning and normalization

Having data in the right format is only the first step!

Warning: As mentioned above, we need to be careful that the input data are “clean” and have unambiguous
interpretation. Here are some examples of potential issues:

Example 1: The entity with ID=41 has only one measurement and it is NR. What does it mean? Can we remove it
from the data without impact?

• 40, 30-12-2003, A+, 3

• 41, 21-07-2000, NR, 0

• 42, 30-06-2004, A+, 3

Example 2: ID 46 has three identical measurements at different times. What does it mean? Can we ignore the
intermediate observations without impact? (Observing a no-change is no the same as not observing a change!)

• 46, 30-05-1999, AA+, 2

• 46, 30-08-2001, AA+, 2

• 46, 30-12-2002, AA+, 2

• 46, 30-12-2003, A+, 3

Example 3: ID 54 is transitioning to D (absorbing state) and then to NR. This means that the label ‘NR’ is used in
multiple ways: Something that is not rated because we know its state anyway (D) and something that

• 54,30-10-2001, CCC+, 7

• 54,30-07-2002, D, 8

• 54,30-12-2002, NR, 0

Those examples illustrate that converting the raw input data into a clean dataset might require additional assumptions.
This must be done on a case-by-case basis. For example: if an entity is only observed once in a state, maybe it is valid
to assume it is in that state throughout the observation window. Another example: maybe it is valid to assume that
multiple observations of no changing state do not carry any information and thus can be merged, etc.

Note: For a (non-exhaustive) list of data cleaning steps check out the script exam-
ples/python/data_cleaning_example.py

3.2. An end-to-end usage example from credit risk 9

transitionMatrix Documentation, Release 0.5.0

3.2.4 Step 4: Establish the State Space

Lets rename the columns accordingly:

data = data.rename(columns={"Rating": "State", "Date": "Time", "CustomerId": "ID"})
print(unique_states(data))

['CCC+' 'B+' 'BB+' 'AA+' 'A+' 'BBB+' 'NR' 'D' 'AAA']

We see that we have 9 unique states:

• 7 ratings states: AAA, AA+, etc presumably refer to different credit qualities (it is typical when the rating scale
uses the (+) qualifier to also have (-) but here this is not the case).

• D probably means an absorbing (Default) state

• NR probably means not rated

Let us create the State Space

originator = 'me'
full_name = 'my state space'
definition = [('0', 'NR'), ('1', "AAA"), ('2', "AA+"), ('3', "A+"), ('4', "BBB+"),

('5', "BB+"), ('6', "B+"), ('7', "CCC+"),
('8', "D")]

mySS = StateSpace(definition=definition, originator=originator, full_name=full_name,
→˓cqs_mapping=None)

print(mySS.validate_dataset(data))

Note: The above shows the functionality of the StateSpace object. In this case the validation is expected as we
constructed the labels from what we found on the data set, but if the rating scale we use is given this becomes a more
insightful validation exercise

3.3 Further Resources

There is a large and growing set of examples and other training material to get you started:

3.3.1 Examples Directory

Look at the Usage Examples directory of the transitionMatrix distribution for a variety of typical workflows.

Note: Many scripts contain multiple examples. You need to manually edit the example ID within the file to select the
desired example

3.3.2 Open Risk Academy

For more in depth study, the Open Risk Academy has courses elaborating on the use of the library:

• Analysis of Credit Migration using Python TransitionMatrix

10 Chapter 3. Getting Started

https://www.openriskacademy.com/course/view.php?id=38

transitionMatrix Documentation, Release 0.5.0

Note: The Example scripts from the Open Risk Academy course PYT26038 are available in a separate repo

3.3. Further Resources 11

https://github.com/open-risk/Academy-Course-PYT26038

transitionMatrix Documentation, Release 0.5.0

12 Chapter 3. Getting Started

CHAPTER 4

Input Data Formats

The transitionMatrix package supports a variety of input data formats for empirical (observation) data. Two key ones
are described here in more detail. More background about data formats is available at the Open Risk Manual Risk
Data Category

4.1 Long Data Format

Long Data Format is a tabular representation of time series data that records the states (measurements) of multiple
entities. Its defining characteristic is that each table row contains data pertaining to one entity at one point in time.

4.1.1 Canonical Form of Long Data

The Long Data Format (also Narrow or Stacked) consists of Tuples, e.g. (Entity ID, Time, From State, To State)
indicating the time T at which an entity with ID migrated from the (From State) -> to the (To State).

The canonical form used as input to duration based estimators uses normalized timestamps (from 0 to T_max, where
T_max is the last timepoint) and looks as follows:

ID Time From To
1 1.1 0 1
1 2.0 1 2
1 3.4 2 3
1 4.0 3 2
2 1.2 0 1
2 2.4 1 2
2 3.5 2 3

The canonical form has the advantage of being unambiguous about the context where the transition occurs. The
meaning of each row of data stands on its own and does not rely on the order (or even the presence) of other records.

13

https://www.openriskmanual.org/wiki/Category:Risk_Data
https://www.openriskmanual.org/wiki/Category:Risk_Data

transitionMatrix Documentation, Release 0.5.0

This facilitates, for example, the algorithmic processing of the data. On the flipside, the format is less efficient in terms
of storage (the state information occurs twice) compared to the compact format (See below).

The canonical format requires that the final state of all entities at the end of the observation window (Time F) is
included (otherwise we have no indication about when the measurements stopped). Alternatively such information
is provided as separate metadata (or implicitly, for example if measurements are understood to span a number of full
annual periods).

Note: Synthetic_data(7, 8, 9) in the Datasets collection are examples of data in long format and canonical form

4.1.2 String Dates

It is frequent that transition data (e.g. from financial applications) have timestamps in the form of a date string. For
example:

ID Date String From To
1 10-10-2010 0 1
1 10-11-2010 1 2

String dates must be converted to a numerical representation before we can work with the transition data. tran-
sitionMatrix offers the transitionMatrix.utils.converters.datetime_to_float() function of
transitionMatrix.utils subpackage can be used to convert data into the canonical form.

Note: Synthetic_data9 and rating_data in the Datasets collection have observation times in string data form.

4.2 Compact Form of Long Format

The format uses triples (ID, Time, State), indicating the time T at which an entity ID Left its previous state S (the
state it migrates to is encoded in the next observation of the same entity). The convention can obviously be reversed to
indicate the time of entering a new state (in which case we need some information to bound the start of the observation
window).

The compact long format avoids the duplication of data of the canonical approach but requires the presence of other
records to infer the realised sequence of events.

The format also requires that the final state of all entities at the end of the observation window (Time F) is included
as the last record (otherwise we have no indication about when the measurements stopped). Alternatively such in-
formation is provided separately (or implicitly, e.g. if measurements are understood to span a number of full annual
periods).

14 Chapter 4. Input Data Formats

transitionMatrix Documentation, Release 0.5.0

ID Time State
1 1.1 0
1 2.0 1
1 3.4 2
1 4.0 3
1 F 2
2 1.2 0
2 2.4 1
2 3.5 2
2 F 3

4.3 Wide Data Format

Wide Data Format is an alternative tabular representation of time series data that records the states (measurements) of
multiple entities. Its defining characteristic is that each table row contains all the data pertaining to any one entity.
The measurement times are not arbitrary but encoded in the column labels:

ID 2011 2012 2013
A1 1 0 1
A2 2 1 3
A3 0 1 2

Conversion from wide to long formats can be handled using the pandas wide_to_long method.

(This method will be more integrated in the future)

4.4 Other Formats

As mentioned, a design choice is that data ingestion of transitionMatrix is via a pandas dataframe so other formats can
be handled with additional code by the user. If there is a format that you repeatedly encounter submit an issue with
your desired format / transformation suggestion.

4.3. Wide Data Format 15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.wide_to_long.html
https://github.com/open-risk/transitionMatrix/issues

transitionMatrix Documentation, Release 0.5.0

16 Chapter 4. Input Data Formats

CHAPTER 5

Datasets

The transitionMatrix distribution includes a number of datasets to support testing / training objectives. Datasets come
in two main types:

• State Transition Data (used in estimation). There are both dummy (synthetic) examples and some actual data.
Transition data are usually in CSV format.

• Transition Matrices and Multi-period Sets of matrices (again both dummy and actual examples). Transition
matrices are usually in JSON format.

5.1 State Transition Data

The scripts are located in examples/python. For testing purposes all examples can be run using the run_examples.py
script located in the root directory. Some scripts have an example flag that selects alternative input data or estimators.

17

transitionMatrix Documentation, Release 0.5.0

Table 1: List of Transition Datasets
File FormatEventsEntitiesStatesGenerator Description
rating_data_raw.csvCompact4000 1829 9 Extract A typical credit rating dataset
rating_data.csv Compact3780 1642 9 Data cleaning

script
A typical credit rating dataset

scenario_data.csvCompact550 50 5
synthetic_data.csvCompact100 10 2
synthetic_data1.csvCompact100 1 4 Generator(=1) DURATION TYPE DATASETS (Compact format)
synthetic_data2.csvCompact100001000 2 Generator(=2) DURATION TYPE DATASETS (Compact format)
synthetic_data3.csvCompact2000 100 7 Generator(=3) DURATION TYPE DATASETS (Compact format)
synthetic_data4.csvCompact100001000 8 Generator(=4) Cohort type dataset (Generic Rating Matrix). Offers a

semi-realistic example
synthetic_data5.csvCompact50000100003 Generator(=5) Large cohort type dataset useful for testing convergence
synthetic_data6.csvCompact200001000 2 Generator(=6) COHORT TYPE DATASETS
synthetic_data7.csvCanonical1295 1000 8 Generator(=7) Duration type datasets in Long Format
synthetic_data8.csvCanonical10000100002 Generator(=8) Duration type datasets in Long Format
synthetic_data9.csvCanonical1338 1000 8 Generator(=9) Duration type datasets in Long Format
synthetic_data10.csvCanonical120002000 9 Generator(=10) Credit Rating Migrations in Long Format / Compact

Form
test.csv Compact14 7 3

5.2 Transition Matrices

• generic_monthly

• generic_multiperiod

• JLT

• sp 2017

18 Chapter 5. Datasets

CHAPTER 6

Preprocessing

The preprocessing stage includes preparatory steps leading up to the matrix Estimation to produce a transition matrix
(or matrix set).

The precise steps required depend on the sources of data, the nature of data, use specific requirements (best practices,
regulation etc) and, not least, the desired estimation method.

6.1 State Spaces

A State Space is a fundamental concept in probability theory and computer science representing the possible configu-
rations for a modelled system

The StateSpace object stores a state space structure as a List of tuples. The first two elements of each tuple contain the
index (base-0) and label of the state space respectively.

Additional fields are reserved for further characterisation

6.1.1 Example: Map credit ratings between systems

• Script: state_space_operations.py

Example workflows for converting data from one credit rating system to another using an established mapping table

6.2 Cohorts

Organizing data in cohorts can be an important step in understating transition data or towards applying a Cohort
Estimator. Cohorts in this context are understood as the grouping of entities within a temporal interval. For example
in a credit rating analysis context cohorts could be groups of annual observations. The implication of cohorting data is
that the more granular information embedded in a more precise timestamp is not relevant. It is also possible that input
data are only available in cohort form (when the precise timestamp information is not recorded at the source)

19

https://www.openriskmanual.org/wiki/Cohort

transitionMatrix Documentation, Release 0.5.0

Note: Cohorting can bias the estimation in various subtle ways, so it is important that any procedure is well docu-
mented.

6.2.1 Cohorting Utilities

Cohorting utilities are part of Preprocessing. Presently the core algorithm is implemented in transitionMatrix.
utils.preprocessing.bin_timestamps().

6.2.2 Intermediate Cohort Data Formats

The cohort data format is a tabular representation of time series data that records the states (measurements) of multiple
entities. Its defining characteristic is that each table row contains data pertaining to one entity at one point in time.

The canonical form used as input to duration based estimators uses normalized timestamps (from 0 to T_max, where
T_max is the last timepoint) and looks as follows:

ID Time From To
1 1.1 0 1
1 2.0 1 2
1 3.4 2 3
1 4.0 3 2
2 1.2 0 1
2 2.4 1 2
2 3.5 2 3

6.2.3 Cohorting Examples

Cohorting Example 1

An example with limited data (dataset contains only one entity). It is illustrated in script exam-
ples/python./matrix_from_duration_data.py with example flag set to 1. Input data set is synthetic_data1.csv

The state space is as follows (for brevity we work directly with the integer representation)

[('0', "A"), ('1', "B"), ('2', "C"), ('3', "D")]

The cohorting algorithm that assigns the last state to the cohort results in the following table. We notice that there is
alot of movement inside each cohort (high count) and that only two of the states are represented at the cohort level (0
and 1).

ID Cohort State Time Count
0 0 0 0 2.061015 21.0
1 0 1 1 4.400105 14.0
2 0 2 0 6.665899 28.0
3 0 3 0 8.842277 14.0
4 0 4 0 11.111733 21.0
5 0 5 0 11.182184 2.0

20 Chapter 6. Preprocessing

CHAPTER 7

Credit Ratings

Working with credit data is a core use case of transitionMatrix. Functionality that is specific to credit ratings is
generally grouped in the credit ratings subpackage (although the distinction of what is generic and what credit specific
is not always clear).

The following sections document various credit rating related activities. General documentation about credit rating
systems

7.1 Predefined Rating Scales

The transitionMatrix package supports a variety of credit rating scales. They are grouped together in
transitionMatrix.creditratings.creditsystems.

The key ones are described here in more detail.

7.1.1 Rating Scales currently covered

The focus of the current selection is on long-term issuer ratings scales (others will be added):

• AM Best Europe-Rating Services Ltd.

• ARC Ratings S.A.

• Cerved Rating Agency S.p.A.

• Creditreform Rating AG

• DBRS Ratings Limited

• Fitch Ratings

• Moody’s Investors Service

• Scope Ratings AG

• Standard & Poor’s Ratings Services

21

Category:CreditRatingSystem
Category:CreditRatingSystem

transitionMatrix Documentation, Release 0.5.0

7.1.2 Data per Scale

Each rating scale is a StateSpace (see State Spaces) and thus inherits the attributes and methods of that object, namely:

• The entity defining the scale (the originating entity)

• The full name of the scale (as most originators of rating scales offer multiple scales with different meaning an/or
use)

• The definition of the scale (as a list of tuples in the form [(‘0’, ‘X1’), . . . , (‘N-1’, ‘XN)] where X are the
symbols used to denote the credit state

• The CQS (credit quality step) mapping of the scale as defined by regulatory authorities (see next section)

7.1.3 CQS Mappings

The Credit Quality Step (CQS) denotes a standardised indicator of Credit Risk that is recognized in the European
Union

• The CQS Credit Rating Scale is based on numbers, ranging from 1 to 6.

• 1 is the highest quality, 6 is the lowest quality

The European Supervisory Authorities maintain mappings between credit rating agencies and CQS

Note: Consult the original documents from definitive mappings available at the EBA Website

The Rating Agency State Spaces and mappings are obtained from the latest (20 May 2019) Regulatory Reference:

JC 2018 11, FINAL REPORT: REVISED DRAFT ITS ON THE MAPPING OF ECAIS’ CREDIT
→˓ASSESSMENTS UNDER CRR

Example of Label Conversion

Convert labels between credit rating scales

22 Chapter 7. Credit Ratings

https://eba.europa.eu/regulation-and-policy/external-credit-assessment-institutions-ecai/draft-implementing-technical-standards-on-the-mapping-of-ecais-credit-assessments

transitionMatrix Documentation, Release 0.5.0

7.2 Withdrawn Ratings

Withdrawn ratings are a common issue that needs to be handled in the context of estimating transition matrices. See
right censoring issues

7.2.1 Adjust NR (Not Rated) States

Adjusting for NR states can be done via the transitionMatrix.model.TransitionMatrix.remove()
method.

Single Period Matrix

Example of using transitionMatrix to adjust the (not-rated) NR state. Input data are the Standard and Poor’s historical
data (1981 - 2016) for corporate credit rating migrations. Example of handling

• Script: examples/python/adjust_nr_states.py

7.2.2 Multi-period Matrix

• Script: examples/python/fix_multiperiod_matrix.py

7.2. Withdrawn Ratings 23

https://www.openriskmanual.org/wiki/Withdrawn_Ratings

transitionMatrix Documentation, Release 0.5.0

Example of using transitionMatrix to detect and solve various pathologies that might be affecting transition matrix
data

7.3 Credit Curves

A Credit Curve denotes a grouping of credit risk metrics (parameters) that provide estimates that a legal entity experi-
ences a Credit Event over different (an increasing sequence of longer) time periods. See Credit Curves

A multi-period matrix and a credit curve are closely related objects (under some circumstances the later can be thought
of as a subset of the former). The transitionMatrix package offers the following main functionality concerning credit
curves:

• The transitionMatrix.creditratings.creditcurve.CreditCurve class for storing and
working with credit curves

• The transitionMatrix.model.TransitionMatrixSet.default_curves() transitionMa-
trixSet method that extracts from a matrix set the default curve

7.3.1 Example: Calculate and Plot Credit Curves

Example of using transitionMatrix to calculate and visualize multi-period

• Script: examples/python/credit_curves.py

24 Chapter 7. Credit Ratings

https://www.openriskmanual.org/wiki/Category:Credit_Curve

CHAPTER 8

Estimation

The estimation of a transition matrix is one of the core functionalities of transitionMatrix. Several methods and
variations are available in the literature depending on aspects such as:

• The nature of the observations / data (e.g., whether temporal homogeneity is a valid assumption)

• Whether or not there are competing risk effects

• Whether or not observations have coincident values

• Treating the Right-Censorship of observations (Outcomes beyond the observation window)

• Treating the Left-Truncation of observations (Outcomes prior to the the observation window)

8.1 Estimator Types

• Cohort Based Methods that group observations in cohorts

• Duration (also Hazard Rate or Intensity) Based Methods that utilize the actual duration of each state

The main estimators currently implemented are as follows:

8.1.1 Simple Estimator

The estimation of a transition matrix is one of the core functionalities of transitionMatrix. The two main estimators
currently implemented are:

8.1.2 Cohort Estimator

A cohort estimator (more accurately discrete time estimator) is class of estimators of multi-state transitions that is a
simpler alternative to Duration type estimators

25

transitionMatrix Documentation, Release 0.5.0

Estimate a Transition Matrix from Cohort Data

Example workflows using transitionMatrix to estimate a transition matrix from data that are already grouped in cohorts

• Script: examples/python/matrix_from_cohort_data.py

• Example ID: 3

data = pd.read_csv(dataset_path + 'synthetic_data6.csv', dtype={'State': str})
sorted_data = data.sort_values(['ID', 'Timestep'], ascending=[True, True])
myState = tm.StateSpace()
myState.generic(2)
print(myState.validate_dataset(dataset=sorted_data))
myEstimator = es.CohortEstimator(states=myState, ci={'method': 'goodman', 'alpha': 0.
→˓05})
result = myEstimator.fit(sorted_data)
myMatrixSet = tm.TransitionMatrixSet(values=result, temporal_type='Incremental')

myEstimator.print(select='Counts', period=0)
myEstimator.print(select='Frequencies', period=18)

8.1.3 Aalen-Johansen Estimator

The Aalen-Johansen estimator is a multi-state (matrix) version of the Kaplan–Meier estimator for the hazard of a
survival process. The estimator can be used to estimate the transition probability matrix of a Markov process with a
finite number of states. See

Whichever the estimator choice, the outcome of the estimation is an Empirical Transition Matrix (or potentially a
matrix set)

8.1.4 Implementation Notes

• All estimators derive from the highest level BaseEstimator class.

• Duration type estimators derive from the DurationEstimator class

8.2 Estimation Examples

The first example of estimating a transition matrix is covered in the Getting Started section. Here we have a few more
examples:

8.2.1 Estimation Example 1

Example workflows using transitionMatrix to estimate an empirical transition matrix from duration type data. The
datasets are produced using examples/generate_synthetic_data.py This example uses the Aalen-Johansen estimator

• Script: examples/python/empirical_transition_matrix.py

By setting the example variable the script covers a number of variations:

• Version 1: Credit Rating Migration example

• Version 2: Simple 2x2 Matrix for testing

• Version 3: Credit Rating Migration example with timestamps in raw date format

26 Chapter 8. Estimation

https://www.openriskmanual.org/wiki/Aalen-Johansen_Estimator
https://www.openriskmanual.org/wiki/Aalen-Johansen_Estimator

transitionMatrix Documentation, Release 0.5.0

Plot of estimated transition probabilities

8.2.2 Estimation Example 2

Example workflows using transitionMatrix to estimate a transition matrix from data that are in duration format. The
datasets are first grouped in period cohorts

• Script: examples/python/matrix_from_duration_data.py

8.2. Estimation Examples 27

transitionMatrix Documentation, Release 0.5.0

28 Chapter 8. Estimation

CHAPTER 9

Post-processing

The post-processing stage includes steps and activities after the estimation of a transition matrix. The precise steps
required depend on specific circumstances but might involve some of the following:

• “Fixing” a matrix by correcting deficiencies linked to data quality

• Obtaining the infinitesimal generator of a matrix, a powerful tool for further analysis

• Working with multi-period matrices

• Visualizing transition datasets and transition frequencies

9.1 Basic Operations

The core TransitionMatrix object implements a typical (one period) transition matrix. It supports a variety of opera-
tions (more details are documented in the API section)

• Initialize a matrix (from data, predefined matrices etc)

• Validate a matrix

• Attempt to fix a matrix

• Compute generators, powers etc.

• Print a matrix

• Output to json/csv/xlsx formats

• Output to html format

9.1.1 Simple Operation Examples

29

transitionMatrix Documentation, Release 0.5.0

Note: The script examples/python/matrix_operations.py contains the below and plenty more simple single matrix
examples

Initialize a matrix with values

There is a growing list of ways to initialize a transition matrix

• Initialize a generic matrix of dimension n

• Any list can be used for initialization (but not all shapes are valid transition matrices!)

• Any numpy array can be used for initialization (but not all are valid transition matrices!)

• Values can be loaded from json or csv files

• The transitionMatrix.creditratings.predefined module includes a number of predefined matrices

A = tm.TransitionMatrix(values=[[0.6, 0.2, 0.2], [0.2, 0.6, 0.2], [0.2, 0.2, 0.6]])
print(A)
A.print_matrix(format_type='Standard', accuracy=2)

[[0.6 0.2 0.2]
[0.2 0.6 0.2]
[0.2 0.2 0.6]]

0.60 0.20 0.20
0.20 0.60 0.20
0.20 0.20 0.60

A.print_matrix(format_type='Standard', accuracy=2)

60.0% 20.0% 20.0%
20.0% 60.0% 20.0%
20.0% 20.0% 60.0%

Both the intrinsic print function and the specific print_matrix will print you the matrix, but the print_matrix method
clearly aims to present the values in a more legible formats.

General Matrix Algebra

Note: All standard numerical matrix operations are available as per the numpy API.

Some example operations that leverage the underlying numpy API:

E = tm.TransitionMatrix(values=[[0.75, 0.25], [0.0, 1.0]])
print(E.validate())
ATTRIBUTES
Getting matrix info (dimensions, shape)
print(E.ndim)
print(E.shape)
Obtain the matrix transpose
print(E.T)
Obtain the matrix inverse

(continues on next page)

30 Chapter 9. Post-processing

transitionMatrix Documentation, Release 0.5.0

(continued from previous page)

print(E.I)
Summation methods:
- along columns
print(E.sum(0))
- along rows
print(E.sum(1))
Multiplying all elements of a matrix by a scalar
print(0.01 * A)
Transition Matrix algebra is very intuitive
print(A * A)
print(A ** 2)
print(A ** 10)

9.1.2 Validating, Fixing and Characterizing a matrix

Validate a Matrix

The validate() method of the object checks for required properties of a valid transition matrix:

1. check squareness

2. check that all values are probabilities (between 0 and 1)

3. check that all rows sum to one

C = tm.TransitionMatrix(values=[1.0, 3.0])
print(C.validate())

[('Matrix Dimensions Differ: ', (1, 2))]

Characterise a Matrix

The characterise() method attempts to characterise a matrix

1. diagonal dominance

9.2 Working with an actual matrix

The core capability of transitionMatrix is to produce estimated matrices but getting a realistic example requires quite
some work. In this section we assume we have estimated one.

Lets look at a realistic example from the JLT paper

Reproduce JLT Generator
We load it using different sources
E = tm.TransitionMatrix(values=JLT)
E_2 = tm.TransitionMatrix(json_file=dataset_path + "JLT.json")
E_3 = tm.TransitionMatrix(csv_file=dataset_path + "JLT.csv")
Lets check there are no errors
Error = E - E_3
print(np.linalg.norm(Error))
Lets look at validation and generators"

(continues on next page)

9.2. Working with an actual matrix 31

transitionMatrix Documentation, Release 0.5.0

(continued from previous page)

Empirical matrices will not satisfy constraints exactly
print(E.validate(accuracy=1e-3))
print(E.characterize())
print(E.generator())
Error = E - expm(E.generator())
Frobenious norm
print(np.linalg.norm(Error))
L1 norm
print(np.linalg.norm(Error, 1))
Use pandas style API for saving to files
E.to_csv("JLT.csv")
E.to_json("JLT.json")

9.3 Multi-Period Transitions

Th transitionMatrix package adopts a multi-period paradigm that is more general than a Markov-Chain framework that
imposes the Markov assumption over successive periods. In this direction, the TransitionMatrixSet object stores a
family of TransitionMatrix objects as a time ordered list. Besides basic storage this structure allows a variety of
simultaneous operations on the collection of related matrices

There are two basic representations of the a multi-period set of transitions:

• The first (cumulative form) is the most fundamental. Each successive (k-th) element stores transition rates from
an initial time to timepoint k. This could be for example the input of an empirical transition matrix dataset

• In the second (incremental form) successive elements store transition rates from timepoint k-1 to timepoint k.

The TransitionMatrixSet class allows converting between the two representations

9.3.1 Matrix Set Operations

• Script: matrix_set_operations.py

Contains examples using transitionMatrix to perform various transition matrix set operations (Multi-period measure-
ment context)

Default Curves

Absorbing states (in credit risk context a borrower default) are particularly important therefore some specific function-
ality to isolate the corresponding default rate curve. (See Also the CreditCurve object)

9.4 Visualization

transitionMatrix aims to support native (Python based) visualization of various transition related datasets using mat-
plotlib and other native python visualization libraries.

Note: The visualization functionality is not yet refactored into a reusable API. For now the visualization functionality
is implemented separately as a demo script.

32 Chapter 9. Post-processing

transitionMatrix Documentation, Release 0.5.0

9.4.1 Visualization Examples

Example workflows using transitionMatrix to generate visualizations of migration phenomena

• Script: examples/python/generate_visuals.py

Example 1

Plotting the state space trajectory of a single entity

Example 2

Plotting the state space trajectory of multiple entities

9.4. Visualization 33

transitionMatrix Documentation, Release 0.5.0

Example 3

Histogram plot of transition frequencies

34 Chapter 9. Post-processing

transitionMatrix Documentation, Release 0.5.0

Example 4

Colored scatterplot of entity transitions over time

9.4. Visualization 35

transitionMatrix Documentation, Release 0.5.0

Example 5

Colored scatterplot of entity transitions over time (alternative form)

36 Chapter 9. Post-processing

transitionMatrix Documentation, Release 0.5.0

Example 6

Visualize a transition matrix using Hinton-style visual

9.4. Visualization 37

transitionMatrix Documentation, Release 0.5.0

Example 7

Visualize a transition matrix using a sankey visual (a logarithmic adaptation that is useful for qualitative insight)

38 Chapter 9. Post-processing

transitionMatrix Documentation, Release 0.5.0

9.4. Visualization 39

transitionMatrix Documentation, Release 0.5.0

40 Chapter 9. Post-processing

CHAPTER 10

Data Generators

The transitionMatrix distribution includes a number of data generators to support testing / training objectives.

• exponential_transitions: Generate continuous time events from exponential distribution and uniform sampling
from state space. Suitable for testing cohorting algorithms and duration based estimators.

• markov_chain: Generate discrete events from a markov chain matrix in Compact data format. Suitable for
testing cohort based estimators

• long_format: Generate continuous events from a markov chain matrix in Long data format. Suitable for testing
duration based estimators

• portfolio_lables: Generate a collection of credit rating states emulating a snapshot of portfolio data. Suitable
for mappings and transformations of credit rating states

Note: Do not confuse data generators with matrix generators

10.1 Data Generation Examples

All data data generation examples are in script examples/python/generate_synthetic_data.py

41

transitionMatrix Documentation, Release 0.5.0

42 Chapter 10. Data Generators

CHAPTER 11

Federation

11.1 Credit Rating Ontology

The Credit Ratings Ontology is a framework that aims to represent and categorize knowledge about Credit Rating
Agencies and related data (Credit Ratings) using semantic web information technologies.

This is a new project, related resources can be found here:

• Online documentation

• Blog post

• Course

• Repo with ontology usage examples

Note: transitionMatrix functionality to federate semantically annotated credit data is planned

43

https://www.openriskmanual.org/ns/cro/index-en.html
https://www.openriskmanagement.com/risk-management-ontologies/
https://www.openriskacademy.com/course/view.php?id=60
https://github.com/open-risk/Academy-Course-PYT26060

transitionMatrix Documentation, Release 0.5.0

44 Chapter 11. Federation

CHAPTER 12

Usage Examples

The examples directory includes both standalone python scripts and jupyter notebooks to help you get started. (NB:
Currently there are more scripts than notebooks).

A selection of topics covered:

• Generating transition matrices from data (using various estimators)

• Manipulating transition matrices

• Computing and visualizing credit curves corresponding to a set of transition matrices

• Mapping rating states between different rating systems

12.1 Python Scripts

The scripts are located in examples/python. For testing purposes all examples can be run using the run_examples.py
script located in the root directory. Some scripts have an example flag that selects alternative input data or estimators.

Table 1: List of Example Scripts
Script Name Flag Input Data Description
adjust_nr_state.py 1 Adjust the NR (not-rated) statistics.
adjust_nr_state.py 2 Adjust the NR (not-rated) statistics.
credit_curves.py Compute and Visualize credit curves
characterize_datasets.py Load the available datasets and compute various statistics
compare_estimators.py synthetic_data4.csv Compare the cohort and aalen-johansen estimators on a dis-

crete timestep sample
data_cleaning_example.py rating_data_raw.csv Prepare transition data sets (data cleansing) using some pro-

vided methods
deterministic_paths.py Create a transition dataset by replicating give trajectories

through a graph
empirical_transition_matrix.py1 synthetic_data7.csv Credit Rating Migration example

Continued on next page

45

transitionMatrix Documentation, Release 0.5.0

Table 1 – continued from previous page
Script Name Flag Input Data Description
empirical_transition_matrix.py2 synthetic_data8.csv Simple 2x2 Matrix for testing
empirical_transition_matrix.py3 synthetic_data9.csv Credit Rating Migration example with timestamps in raw date

format
estimate_matrix.py rating_data.csv An end-to-end example of estimating a credit rating matrix

from historical data
fix_multiperiod_matrix.py sp_1981-2016.csv Detect and solve various pathologies that might be affecting

transition matrix data
generate_full_multiperiod_set.pysp_NR_adjusted.json Use infinitesimal generator methods to generate a full multi-

period matrix set.
generate_synthetic_data.py1 Generate synthetic data. The first set of examples produces

duration type data.
generate_synthetic_data.py2 The second set of examples produces cohort type data using

markov chain simulation
generate_synthetic_data.py3 The second set of examples produces cohort type data using

markov chain simulation
generate_visuals.py 6 JLT.json Plot Transition Probabilities
generate_visuals.py 7 JLT.json Logarithmic Sankey Diagram of Credit Migration Rates
generate_visuals.py 5 scenario_data.csv Plot Entity Transitions Plot
generate_visuals.py 1 synthetic_data1.csv Step Plot of a single observation
generate_visuals.py 4 synthetic_data3.csv Entity Transitions Plot
generate_visuals.py 2 synthetic_data4.csv Step Plot of individual observations
generate_visuals.py 3 synthetic_data5.csv Histogram Plots of transition frequencies
matrix_from_cohort_data.py3 synthetic_data4.csv S&P Style Credit Rating Migration Matrix
matrix_from_cohort_data.py2 synthetic_data5.csv IFRS 9 Style Migration Matrix (Large sample for testing)
matrix_from_cohort_data.py1 synthetic_data6.csv Simplest Absorbing Case for validation
matrix_from_duration_data.py1 synthetic_data1.csv Duration example with limited data (dataset contains only one

entity)
matrix_from_duration_data.py2 synthetic_data2.csv Duration example n entities with ~10 observations each, [0,1]

state, 50%/50% transition matrix
matrix_from_duration_data.py3 synthetic_data3.csv
matrix_lendingclub.py Estimate a matrix from LendingClub data. Input data are in

a special cohort format as the published datasets have some
limitations

matrix_operations.py Perform various transition matrix operations illustrating the
matrix algebra

matrix_set_lendingclub.py Estimate a matrix from LendingClub data. Input data are in
a special cohort format as the published datasets have some
limitations

matrix_set_operations.py Perform operations with multi-period transition matrix se-
quences

state_space_operations.py Examples working with state spaces (mappings)

12.2 Jupyter Notebooks

• Adjust_NotRated_State.ipynb

• Matrix_Operations.ipynb

• Monthly_from_Annual.ipynb

46 Chapter 12. Usage Examples

transitionMatrix Documentation, Release 0.5.0

12.3 Open Risk Academy Scripts

Additional examples are available in the Open Risk Academy course Analysis of Credit Migration using Python
TransitionMatrix. The scripts developed in the course are available here

12.3. Open Risk Academy Scripts 47

https://www.openriskacademy.com/course/management.php?categoryid=26&courseid=38
https://www.openriskacademy.com/course/management.php?categoryid=26&courseid=38
https://github.com/open-risk/Academy-Course-PYT26038

transitionMatrix Documentation, Release 0.5.0

48 Chapter 12. Usage Examples

CHAPTER 13

API

The transitionMatrix package structure and API.

Warning: The library is still being expanded / refactored. Significant structure and API changes are likely.

13.1 transitionMatrix Package

The core module

13.1.1 transitionMatrix Classes

TransitionMatrix

TransitionMatrixSet

EmpiricalTransitionMatrix

Todo: This is future functionality

13.2 transitionMatrix Subpackages

13.2.1 Estimators SubPackage

This subpackage implements the various estimators

49

transitionMatrix Documentation, Release 0.5.0

transitionMatrix.estimators.simple_estimator module

transitionMatrix.estimators.cohort_estimator module

transitionMatrix.estimators.aalen_johansen_estimator module

transitionMatrix.estimators.kaplan_meier_estimator module

Todo: This is future functionality

13.2.2 State Spaces SubPackage

This subpackage implements state space functionality

transitionMatrix.statespaces.statespace module

13.2.3 Credit Ratings SubPackage

This subpackage collects credit rating specific functionality

transitionMatrix.creditratings.creditcurve module

transitionMatrix.creditratings.creditsystems module

transitionMatrix.creditratings.predefined module

13.2.4 Generators SubPackage

This subpackage implements test data generation

transitionMatrix.generators contents

13.2.5 Visualization subpackage

This subpackage implements visualization functionality

Warning: not yet implemented

transitionMatrix.visualization contents

13.2.6 Utilities SubPackage

This subpackage collects various utilities

50 Chapter 13. API

transitionMatrix Documentation, Release 0.5.0

transitionMatrix.utils.converters module

transitionMatrix.utils.preprocessing module

13.2. transitionMatrix Subpackages 51

transitionMatrix Documentation, Release 0.5.0

52 Chapter 13. API

CHAPTER 14

Testing

Testing transitionMatrix has two major components:

• normal code testing aiming to certify the correctness of code execution

• algorithm testing aiming to validate the correctness of algorithmic implementation

Note: In general algorithmic testing is not as precise as code testing and may be more subject to uncertainties
such as numerical accuracy. To make those tests as revealing as possible transitionMatrix implements a number of
standardized round-trip tests:

• starting with a matrix

• generating compatible data

• estimate a matrix from the data

• comparing the values of input and estimated matrices

14.1 Running all the examples

Running all the examples is a quick way to check that everything is installed properly, all paths are defined etc. At the
root of the distribution:

python3 run_examples.py

The file simply iterates and executes a standalone list of Usage Examples.

filelist = ['adjust_nr_state', 'credit_curves', 'empirical_transition_matrix', 'fix_
→˓multiperiod_matrix', 'generate_synthetic_data', 'generate_visuals', 'matrix_from_
→˓cohort_data', 'matrix_from_duration_data', 'matrix_lendingclub', 'matrix_set_
→˓lendingclub', 'matrix_operations', 'matrix_set_operations']

53

transitionMatrix Documentation, Release 0.5.0

Warning: The script might generate a number of files / images at random places within the distribution

14.2 Test Suite

The testing framework is based on unittest. Before you get started and depending on how you obtained / installed the
library check:

• If required adjust the source directory path in transitionMatrix/__init__

• Unzip the data files in the datasets directory

Then run all tests

python3 test.py

For an individual test:

pytest tests/test_TESTNAME.py

54 Chapter 14. Testing

CHAPTER 15

Roadmap

transitionMatrix is an ongoing project. Several significant extensions are already in the pipeline. transitionMatrix aims
to become the most intuitive and versatile tool to analyse discrete transition data. The Roadmap lays out upcoming
steps / milestones in this journey. The Todo list is a more granular collection of outstanding items.

You are welcome to contribute to the development of transitionMatrix by creating Issues or Pull Requests on the github
repository. Feature requests, bug reports and any other issues are welcome to log at the Github Repository

Discussing general usage of the library is happening here

15.1 0.5

The 0.5 will be the next major release (still considered alpha) that will be available e.g. on PyPI

15.2 0.4.X

The 0.4.X family of updates will focus on rounding out and (above all) documenting a number of functionalities
already introduced

55

https://github.com/open-risk/transitionMatrix/issues
https://www.openriskcommons.org/t/analysis-of-credit-migration-using-python-transitionmatrix/74

transitionMatrix Documentation, Release 0.5.0

56 Chapter 15. Roadmap

CHAPTER 16

Todo List

A list of todo items, no triaging / prioritisation implied

16.1 Core Architecture and API

• Introduce exceptions / error handling throughout

• Solve numpy.matrix deprecation (implement equivalent API in terms of ndarray)

• Complete testing framework

16.2 Input Data Preprocessing

• Handing of markov chain transition formats (single entity)

• Native handling of Wide Data Formats (concrete data sets missing)

• Generalize cohorting algorithm to user specified function

16.3 Reference Data

• Additional credit rating scales (e.g short term ratings)

• Integration with credit rating ontology

16.4 Transition Matrix Analysis Functionality

• Further validation and characterisation of transition matrices (mobility indexes)

57

transitionMatrix Documentation, Release 0.5.0

• Generate random matrix subject to constraints

• Fixing common problems encountered by empirically estimated transition matrices

16.5 Statistical Analysis Functionality

• Aalen Johansen Estimator

– Covariance calculation

– Various other improvements / tests

• Cohort Estimator

– Read Data by labels

– Edge cases

• Kaplan Meier Estimator NEW

– (link to survival frameworks)

• Duration based methods

• Bootstrap based confidence intervals

16.6 State Space package

• Multiple absorbing states (competing risks)

• Automated coarsening of states (merging of similar)

16.7 Credit Rating Related

• Import data defined according to CRO ontology

• Absorbing State Identification, Competing Risks

• Compute hazard rates

• Characterize hazard rates

16.8 Utilities

• Continuous time data generation from arbitrary chain

16.9 Further Refactoring of packages

• Introduce visualization objects / API

58 Chapter 16. Todo List

transitionMatrix Documentation, Release 0.5.0

16.10 Performance / Big data

• Handling very large data sets, moving away from in-memory processing

16.11 Documentation

• Sphinx documentation (complete)

• Expand the jupyter notebook collection to (at least) match the standalone scripts

16.12 Releases / Distribution

• Adopt regular github/PyPI release schedule

• Conda distribution

16.10. Performance / Big data 59

transitionMatrix Documentation, Release 0.5.0

60 Chapter 16. Todo List

CHAPTER 17

ChangeLog

PLEASE NOTE THAT THE API OF TRANSITION MATRIX IS STILL UNSTABLE AS MORE USE CASES /
FEATURES ARE ADDED REGULARLY

17.1 v0.5.0 (21-02-2022)

• Installation:

– Bump python dependency to 3.7

– PyPI release update

17.2 v0.4.9 (04-05-2021)

• Refactoring: All non-core functionality moved to separate directories/sub-packages

– credit curve stuff moved to creditratings modules

– data generators moved to generators modules

– etc.

• Documentation: Major expansion (Still incomplete)

– Expanded Data Formats

– Rating Scales, CQS etc

– Listing all datasets and examples

• Testing / Training: An interesting use case raised as issue #20

– Added an end-to-end example of estimating a credit rating matrix from raw data

– Includes various data preprocessing examples

61

transitionMatrix Documentation, Release 0.5.0

• Datasets:

– rating_data.csv (cleaned up credit data)

– synthetic_data10.csv Credit Rating Migrations in Long Format / Compact Form (for testing)

– deterministic generator (replicate given trajectories)

• Tests:

– test_roundtrip.py testing via roundtriping methods

17.3 v0.4.8 (07-02-2021)

• Documentation: Pulled all rst files in docs

• Refactoring: credit rating data moved into separate module

17.4 v0.4.7 (29-09-2020)

• Documentation: Expanded and updated description of classes

• Documentation: Including Open Risk Academy code examples

• Feature: logarithmic sankey visualization

17.5 v0.4.6 (22-05-2019)

• Feature: Update of CQS Mappings, addition of new rating scales

• Documentation: Documentation of rating scale structure and mappings

• Training: Example of mapping portfolio data to CQS

17.6 v0.4.5 (21-04-2019)

• Training: Monthly_from_Annual.ipynb (a Jupyter notebook illustrating how to obtain interpolate transition rates
on monthly intervals)

• Datasets: generic_monthly.json

• Feature: print_matrix function for generic matrix pretty printing

• Feature: matrix_exponent function for obtaining arbitrary integral matrices from a given generator

17.7 v0.4.4 (03-04-2019)

• Documentation: Cleanup of docs following separation of threshold / portfolio models

• Datasets: generic_multiperiod.json

• Feature: CreditCurve class for holding credit curves

62 Chapter 17. ChangeLog

transitionMatrix Documentation, Release 0.5.0

17.8 v0.4.3 (29-03-2019)

• Refactoring: Significant rearrangement of code (the threshold models package moved to portfolioAnalytics for
more consistent structure of the code base / functionality)

17.9 v0.4.2 (29-01-2019)

• Feature: converter function in transitionMatrix.utils.converters to convert long form dataframes into canonical
float form

• Datasets: synthetic_data9.csv (datetime in string format)

• Training: new data generator in examples/generate_synthetic_data.py to generate long format with string dates

• Training: Additional example (=3) in examples/empirical_transition_matrix.py to process long format with
string dates

• Documentation: More detailed explanation of Long Data Formats with links to Open Risk Manual

• Documentation: Enabled sphinx.ext.autosectionlabel for easy internal links / removed duplicate labels

17.10 v0.4.1 (31-10-2018)

• Feature: Added functionality for conditioning multi-period transition matrices

• Training: Example calculation and visualization of conditional matrices

• Datasets: State space description and CGS mappings for top-6 credit rating agencies

17.11 v0.4.0 (23-10-2018)

• Installation: First PyPI and wheel installation options

• Feature: Added Aalen-Johansen Duration Estimator

• Documentation: Major overhaul of documentation, now targeting ReadTheDocs distribution

• Training: Streamlining of all examples

• Datasets: Synthetic Datasets in long format

17.12 v0.3.1 (21-09-2018)

• Feature: Expanded functionality to compute and visualize credit curves

17.13 v0.3 (27-08-2018)

• Feature: Addition of portfolio models (formerly portfolio_analytics_library) for data generation and testing

• Training: Added examples in jupyter notebook format

17.8. v0.4.3 (29-03-2019) 63

transitionMatrix Documentation, Release 0.5.0

17.14 v0.2 (05-06-2018)

• Feature: Addition of threshold generation algorithms

17.15 v0.1.3 (04-05-2018)

• Documentation: Sphinx based documentation

• Training: Additional visualization examples

17.16 v0.1.2 (05-12-2017)

• Refactoring: Dataset paths

• Bugfix: Correcting requirement dependencies (missing matplotlib)

• Documentation: More detailed instructions

17.17 v0.1.1 (03-12-2017)

• Feature: TransitionMatrix model: new methods to merge States, fix problematic probability matrices, I/O API’s

• Feature: TransitionMatrixSet mode: json and csv readers, methods for set-wise manipulations

• Datasets: Additional multiperiod datasets (Standard and Poors historical corporate rating transition rates)

• Feature: Enhanced matrix comparison functionality

• Training: Three additional example workflows

– fixing multiperiod matrices (completing State Space)

– adjusting matrices for withdrawn entries

– generating full multi-period sets from limited observations

17.18 v0.1.0 (11-11-2017)

• First public release of the package

64 Chapter 17. ChangeLog

CHAPTER 18

Indexes and tables

• genindex

• modindex

• search

65

	The transitionMatrix Library
	Functionality
	Architecture

	Installation
	Dependencies
	From PyPI
	From sources
	Using virtualenv
	File structure
	Other similar open source software

	Getting Started
	The transitionMatrix components
	An end-to-end usage example from credit risk
	Further Resources

	Input Data Formats
	Long Data Format
	Compact Form of Long Format
	Wide Data Format
	Other Formats

	Datasets
	State Transition Data
	Transition Matrices

	Preprocessing
	State Spaces
	Cohorts

	Credit Ratings
	Predefined Rating Scales
	Withdrawn Ratings
	Credit Curves

	Estimation
	Estimator Types
	Estimation Examples

	Post-processing
	Basic Operations
	Working with an actual matrix
	Multi-Period Transitions
	Visualization

	Data Generators
	Data Generation Examples

	Federation
	Credit Rating Ontology

	Usage Examples
	Python Scripts
	Jupyter Notebooks
	Open Risk Academy Scripts

	API
	transitionMatrix Package
	transitionMatrix Subpackages

	Testing
	Running all the examples
	Test Suite

	Roadmap
	0.5
	0.4.X

	Todo List
	Core Architecture and API
	Input Data Preprocessing
	Reference Data
	Transition Matrix Analysis Functionality
	Statistical Analysis Functionality
	State Space package
	Credit Rating Related
	Utilities
	Further Refactoring of packages
	Performance / Big data
	Documentation
	Releases / Distribution

	ChangeLog
	v0.5.0 (21-02-2022)
	v0.4.9 (04-05-2021)
	v0.4.8 (07-02-2021)
	v0.4.7 (29-09-2020)
	v0.4.6 (22-05-2019)
	v0.4.5 (21-04-2019)
	v0.4.4 (03-04-2019)
	v0.4.3 (29-03-2019)
	v0.4.2 (29-01-2019)
	v0.4.1 (31-10-2018)
	v0.4.0 (23-10-2018)
	v0.3.1 (21-09-2018)
	v0.3 (27-08-2018)
	v0.2 (05-06-2018)
	v0.1.3 (04-05-2018)
	v0.1.2 (05-12-2017)
	v0.1.1 (03-12-2017)
	v0.1.0 (11-11-2017)

	Indexes and tables

