

    
      
          
            
  
transitionMatrix Documentation

[image: _images/overview.png]
transitionMatrix is a pure Python powered library for the statistical analysis and visualization of state transition phenomena. It can be used to analyze any dataset that captures timestamped transitions in a discrete state space.

Use cases include applications in finance (for example credit rating transitions), IT (system state event logs) and more.

NB: transitionMatrix is still in alpha release / active development. If you encounter issues please raise them in our github repository


Contents:


	The transitionMatrix Library
	Functionality

	Architecture





	Installation
	Dependencies

	From PyPI

	From sources

	Using virtualenv

	File structure

	Other similar open source software





	Getting Started
	The transitionMatrix components

	An end-to-end usage example from credit risk

	Further Resources





	Input Data Formats
	Long Data Format

	Compact Form of Long Format

	Wide Data Format

	Other Formats





	Datasets
	State Transition Data

	Transition Matrices





	Preprocessing
	Input Data Formats

	State Spaces

	Cohorts





	Credit Ratings
	Predefined Rating Scales

	Withdrawn Ratings

	Credit Curves





	Estimation
	Estimator Types

	Estimation Examples





	Post-processing
	Basic Operations

	Working with an actual matrix

	Multi-Period Transitions

	Visualization





	Data Generators
	Data Generation Examples





	Federation
	Credit Rating Ontology





	Usage Examples
	Python Scripts

	Jupyter Notebooks

	Open Risk Academy Scripts





	API
	transitionMatrix Package

	transitionMatrix Subpackages





	Testing
	Running all the examples

	Test Suite





	Roadmap
	0.5

	0.4.X





	Todo List
	Core Architecture and API

	Input Data Preprocessing

	Reference Data

	Transition Matrix Analysis Functionality

	Statistical Analysis Functionality

	State Space package

	Credit Rating Related

	Utilities

	Further Refactoring of packages

	Performance / Big data

	Documentation

	Releases / Distribution





	ChangeLog
	v0.5.0 (21-02-2022)

	v0.4.9 (04-05-2021)

	v0.4.8 (07-02-2021)

	v0.4.7 (29-09-2020)

	v0.4.6 (22-05-2019)

	v0.4.5 (21-04-2019)

	v0.4.4 (03-04-2019)

	v0.4.3 (29-03-2019)

	v0.4.2 (29-01-2019)

	v0.4.1 (31-10-2018)

	v0.4.0 (23-10-2018)

	v0.3.1 (21-09-2018)

	v0.3 (27-08-2018)

	v0.2 (05-06-2018)

	v0.1.3 (04-05-2018)

	v0.1.2 (05-12-2017)

	v0.1.1 (03-12-2017)

	v0.1.0 (11-11-2017)











Indexes and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
The transitionMatrix Library

[image: _images/overview.png]
transitionMatrix is a pure Python powered library for the statistical analysis and visualization of state transition phenomena. It can be used to analyze any dataset that captures timestamped transitions in a discrete state space.


	Author: Open Risk [http://www.openriskmanagement.com]


	License: Apache 2.0


	Development Website: Github [https://github.com/open-risk/transitionMatrix]


	Code Documentation: Read The Docs [https://transitionmatrix.readthedocs.io/en/latest/]


	Mathematical Documentation: Open Risk Manual [https://www.openriskmanual.org/wiki/Category:Transition_Matrix]


	Chat: Open Risk Commons [https://www.openriskcommons.org/c/open-source/transitionmatrix/15]


	Training: Open Risk Academy [https://www.openriskacademy.com/login/index.php]


	Showcase: Blog Posts [https://www.openriskmanagement.com/tags/transition-matrix/]





Functionality

You can use transitionMatrix to:


	Estimate transition matrices from historical event data using a variety of estimators


	Characterise transition matrices (identify their key properties)


	Visualize event data and transition matrices


	Manipulate transition matrices (derive generators, perform comparisons, stress transition rates etc.)


	Access standardized Datasets for testing


	Extract and work with credit default curves (absorbing states)


	Map credit ratings using mapping tables


	More (still to be documented :-)






Architecture


	transitionMatrix provides intuitive objects for handling transition matrices individually and as sets (based on numpy arrays)


	supports file input/output in json and csv formats


	it has a powerful API for handling event data (based on pandas and numpy)


	supports visualization using matplotlib







Installation

You can install and use the transitionMatrix package in any system that supports the Scipy ecosystem of tools [https://scipy.org/install.html]


Dependencies


	TransitionMatrix requires Python 3 (currently 3.7)


	It depends on numerical and data processing Python libraries (Numpy, Scipy, Pandas).


	The Visualization API depends on Matplotlib.


	The precise dependencies are listed in the requirements.txt file.


	TransitionMatrix may work with earlier versions of python / these packages but it is not tested.






From PyPI

pip3 install transitionMatrix







From sources

Download the sources in your preferred directory:

git clone https://github.com/open-risk/transitionMatrix







Using virtualenv

It is advisable to install the package in a virtualenv so as not to interfere with your system’s python distribution

virtualenv -p python3 tm_test
source tm_test/bin/activate





If you do not have pandas already installed make sure you install it first (this will also install numpy and other required dependencies).

pip3 install -r requirements.txt





Finally issue the install command and you are ready to go!

python3 setup.py install







File structure

The distribution has the following structure:

| transitionMatrix/     Directory with the library source code
| -- model.py           File with main data structures
| -- estimators/        Directory with the estimator methods
| -- statespaces/       Directory with state space objects and methods
| -- creditratings/     Directory with predefined credit rating structures
| -- generators/        Directory with data generator methods
| -- utils/             Directory with helper classes and methods
| -- examples/          Directory with usage examples
| ---- python/          Examples as standalone python scripts
| ---- notebooks/       Examples as jupyter notebooks
| -- datasets/          Directory with a variety of datasets useful for getting started
| -- tests/             Directory with the testing suite







Other similar open source software


	etm, an R package for estimating empirical transition matrices


	msSurv, an R Package for Nonparametric Estimation of Multistate Models


	msm, Multi-state modelling with R


	mstate, competing risks and multistate models in R


	lifelines, python survival package








          

      

      

    

  

    
      
          
            
  
Getting Started


The transitionMatrix components

The transitionMatrix package includes several components (organized in sub-packages) providing a variety of functionality for working with state transition phenomena. The overall organization and functionality is summarized in the following graphic:

[image: _images/Architecture_Overview.png]
The library is structured in a modular way: users may mix and match the various components to meet their own needs. The main workflow can be captured in the standard pre-processing, modelling and post-processing stages:


	Preprocessing stage


	Estimation stage


	Post-processing stage




An secondary segmentation that is important to keep in mind is between general functionality that is relevant to general data about state transitions and more specific domains with more specific conventions and needs. At present the only specific domain concerns credit ratings [https://www.openriskmanual.org/wiki/Credit_Rating].

Here we will dive straight-in into using transitionMatrix going a concrete (and typical) example using historical credit rating transitions. Further resources and links to more detailed and specific usage are available at the end of this section. People who are not at all familiar with the machinery of transition matrices might want to start with Basic Operations.



An end-to-end usage example from credit risk

In order to give a quick introduction to the package we discuss here a concrete and end-to-end example of using transitionMatrix that is drawn for the credit ratings space. The example does not cover all functionality, but it demonstrates the core workflow.

We will use the data set “rating_data.csv” that is available in Datasets directory. The code snippets discussed here are all from the script <examples/python/estimate_matrix.py>


Step 1: Loading the data

Data loading is best done via pandas dataframes:

data = pd.read_csv('../../datasets/rating_data.csv')
print(data.head())

   CustomerId        Date Rating  RatingNum
0           1  30-05-2000   CCC+          7
1           1  31-12-2000     B+          6
2           2  21-05-2003     B+          6
3           3  30-12-1999    BB+          5
4           3  30-10-2000     B+          6





We see that there is just enough metadata in the csv header to get an impression of how the data set captures transitions:


	Each entity is identified by an integer (First column: CustomerId)


	State measurements / transitions are observed at dates (in the DD-MM-YYYY format) (Second column: Date)


	There is an implied credit rating scale using symbols ‘B+, BB+’ etc (Third column: Rating)


	The rating scale is also expressed as integers (Fourth column: RatingNum)





Note

There are several important points we need to clarify before we can confidently extract information from this dataset and (ultimately) estimate a transition matrix. For example:


	Do we understand the column labels or do we need additional (metadata)


	What is the observation window?


	Are the dates indicating a measurement (including no change) or a changed state?


	Are all possible transitions observed in the sample?


	Are all data provided consistent?


	Etc






Some of those questions maybe answerable with the tools offered by transitionMatrix but it is always the responsibility of the data scientist to make sure they are correctly interpreting the data and using the tools accordingly! The



Step 2: Understanding the data format

Our first task is to identify which data format is closest for us to use.  In Input Data Formats we see that what we have looks closest to a Compact Form of Long Format with the temporal information in String Dates.



Step 3: Data cleaning and normalization

Having data in the right format is only the first step!


Warning

As mentioned above, we need to be careful that the input data are “clean” and have unambiguous interpretation. Here are some examples of potential issues:

Example 1: The entity with ID=41 has only one measurement and it is NR. What does it mean? Can we remove it from the data without impact?


	40, 30-12-2003, A+, 3


	41, 21-07-2000, NR, 0


	42, 30-06-2004, A+, 3




Example 2: ID 46 has three identical measurements at different times. What does it mean? Can we ignore the intermediate observations without impact? (Observing a no-change is no the same as not observing a change!)


	46, 30-05-1999, AA+, 2


	46, 30-08-2001, AA+, 2


	46, 30-12-2002, AA+, 2


	46, 30-12-2003, A+, 3






Example 3: ID 54 is transitioning to D (absorbing state) and then to NR. This means that the label ‘NR’ is used in multiple ways: Something that is not rated because we know its state anyway (D) and something that



	54,30-10-2001, CCC+, 7


	54,30-07-2002, D, 8


	54,30-12-2002, NR, 0







Those examples illustrate that converting the raw input data into a clean dataset might require additional assumptions. This must be done on a case-by-case basis. For example: if an entity is only observed once in a state, maybe it is valid to assume it is in that state throughout the observation window. Another example: maybe it is valid to assume that multiple observations of no changing state do not carry any information and thus can be merged, etc.


Note

For a (non-exhaustive) list of data cleaning steps check out the script examples/python/data_cleaning_example.py





Step 4: Establish the State Space

Lets rename the columns accordingly:

data = data.rename(columns={"Rating": "State", "Date": "Time", "CustomerId": "ID"})
print(unique_states(data))

['CCC+' 'B+' 'BB+' 'AA+' 'A+' 'BBB+' 'NR' 'D' 'AAA']





We see that we have 9 unique states:


	7 ratings states: AAA, AA+, etc presumably refer to different credit qualities (it is typical when the rating scale uses the (+) qualifier to also have (-) but here this is not the case).


	D probably means an absorbing (Default) state


	NR probably means not rated




Let us create the State Space

originator = 'me'
full_name = 'my state space'
definition = [('0', 'NR'), ('1', "AAA"), ('2', "AA+"), ('3', "A+"), ('4', "BBB+"),
              ('5', "BB+"), ('6', "B+"), ('7', "CCC+"),
              ('8', "D")]

mySS = StateSpace(definition=definition, originator=originator, full_name=full_name, cqs_mapping=None)

print(mySS.validate_dataset(data))






Note

The above shows the functionality of the StateSpace object. In this case the validation is expected as we constructed the labels from what we found on the data set, but if the rating scale we use is given this becomes a more insightful validation exercise






Further Resources

There is a large and growing set of examples and other training material to get you started:


Examples Directory

Look at the Usage Examples directory of the transitionMatrix distribution for a variety of typical workflows.


Note

Many scripts contain multiple examples. You need to manually edit the example ID within the file to select the desired example





Open Risk Academy


	For more in depth study, the Open Risk Academy has courses elaborating on the use of the library:

	
	Analysis of Credit Migration using Python TransitionMatrix [https://www.openriskacademy.com/course/view.php?id=38]









Note

The Example scripts from the Open Risk Academy course PYT26038 are available in a separate repo [https://github.com/open-risk/Academy-Course-PYT26038]








          

      

      

    

  

    
      
          
            
  
Input Data Formats

The transitionMatrix package supports a variety of input data formats for empirical (observation) data. Two key ones are described here in more detail. More background about data formats is available at the Open Risk Manual Risk Data Category [https://www.openriskmanual.org/wiki/Category:Risk_Data]


Long Data Format

Long Data Format is a tabular representation of time series data that records the states (measurements) of multiple entities. Its defining characteristic is that each table row contains data pertaining to one entity at one point in time.


Canonical Form of Long Data

The Long Data Format (also Narrow or Stacked) consists of Tuples, e.g. (Entity ID, Time, From State, To State) indicating the time T at which an entity with ID migrated from the (From State) -> to the (To State).

The canonical form used as input to duration based estimators uses normalized timestamps (from 0 to T_max, where T_max is the last timepoint) and looks as follows:










	ID

	Time

	From

	To



	1

	1.1

	0

	1



	1

	2.0

	1

	2



	1

	3.4

	2

	3



	1

	4.0

	3

	2



	2

	1.2

	0

	1



	2

	2.4

	1

	2



	2

	3.5

	2

	3









The canonical form has the advantage of being unambiguous about the context where the transition occurs. The meaning of each row of data stands on its own and does not rely on the order (or even the presence) of other records. This facilitates, for example, the algorithmic processing of the data. On the flipside,  the format is less efficient in terms of storage (the state information occurs twice) compared to the compact format (See below).

The canonical format requires that the final state of all entities at the end of the observation window (Time F) is included (otherwise we have no indication about when the measurements stopped). Alternatively such information is provided as separate metadata (or implicitly, for example if measurements are understood to span a number of full annual periods).


Note

Synthetic_data(7, 8, 9) in the Datasets collection are examples of data in long format and canonical form





String Dates

It is frequent that transition data (e.g. from financial applications) have timestamps in the form of a date string. For example:










	ID

	Date String

	From

	To



	1

	10-10-2010

	0

	1



	1

	10-11-2010

	1

	2









String dates must be converted to a numerical representation before we can work with the transition data. transitionMatrix offers the transitionMatrix.utils.converters.datetime_to_float() function of transitionMatrix.utils subpackage can be used to convert data into the canonical form.


Note

Synthetic_data9 and rating_data in the Datasets collection have observation times in string data form.






Compact Form of Long Format

The format uses triples (ID, Time, State), indicating the time T at which an entity ID Left its previous state S (the state it migrates to is encoded in the next observation of the same entity). The convention can obviously be reversed to indicate the time of entering a new state (in which case we need some information to bound the start of the observation window).

The compact long format avoids the duplication of data of the canonical approach but requires the presence of other records to infer the realised sequence of events.

The format also requires that the final state of all entities at the end of the observation window (Time F) is included as the last record (otherwise we have no indication about when the measurements stopped). Alternatively such information is provided separately (or implicitly, e.g. if measurements are understood to span a number of full annual periods).









	ID

	Time

	State



	1

	1.1

	0



	1

	2.0

	1



	1

	3.4

	2



	1

	4.0

	3



	1

	F

	2



	2

	1.2

	0



	2

	2.4

	1



	2

	3.5

	2



	2

	F

	3











Wide Data Format

Wide Data Format is an alternative tabular representation of time series data that records the states (measurements) of multiple entities. Its defining characteristic is that each table row contains all the data pertaining to any one entity. The measurement times are not arbitrary but encoded in the column labels:










	ID

	2011

	2012

	2013



	A1

	1

	0

	1



	A2

	2

	1

	3



	A3

	0

	1

	2









Conversion from wide to long formats can be handled using the pandas wide_to_long method [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.wide_to_long.html].

(This method will be more integrated in the future)



Other Formats

As mentioned, a design choice is that data ingestion of transitionMatrix is via a pandas dataframe so other formats can be handled with additional code by the user. If there is a format that you repeatedly encounter submit an issue with your desired format / transformation suggestion [https://github.com/open-risk/transitionMatrix/issues].





          

      

      

    

  

    
      
          
            
  
Datasets

The transitionMatrix distribution includes a number of datasets to support testing / training objectives. Datasets come in two main types:


	State Transition Data (used in estimation). There are both dummy (synthetic) examples and some actual data. Transition data are usually in CSV format.


	Transition Matrices and Multi-period Sets of matrices (again both dummy and actual examples). Transition matrices are usually in JSON format.





State Transition Data

The scripts are located in examples/python. For testing purposes all examples can be run using the run_examples.py script located in the root directory. Some scripts have an example flag that selects alternative input data or estimators.


List of Transition Datasets










	File

	Format

	Events

	Entities

	States

	Generator

	Description





	rating_data_raw.csv

	Compact

	4000

	1829

	9

	Extract

	A typical credit rating dataset



	rating_data.csv

	Compact

	3780

	1642

	9

	Data cleaning script

	A typical credit rating dataset



	scenario_data.csv

	Compact

	550

	50

	5

	
	


	synthetic_data.csv

	Compact

	100

	10

	2

	
	


	synthetic_data1.csv

	Compact

	100

	1

	4

	Generator(=1)

	DURATION TYPE DATASETS (Compact format)



	synthetic_data2.csv

	Compact

	10000

	1000

	2

	Generator(=2)

	DURATION TYPE DATASETS (Compact format)



	synthetic_data3.csv

	Compact

	2000

	100

	7

	Generator(=3)

	DURATION TYPE DATASETS (Compact format)



	synthetic_data4.csv

	Compact

	10000

	1000

	8

	Generator(=4)

	Cohort type dataset (Generic Rating Matrix). Offers a semi-realistic example



	synthetic_data5.csv

	Compact

	50000

	10000

	3

	Generator(=5)

	Large cohort type dataset useful for testing convergence



	synthetic_data6.csv

	Compact

	20000

	1000

	2

	Generator(=6)

	COHORT TYPE DATASETS



	synthetic_data7.csv

	Canonical

	1295

	1000

	8

	Generator(=7)

	Duration type datasets in Long Format



	synthetic_data8.csv

	Canonical

	10000

	10000

	2

	Generator(=8)

	Duration type datasets in Long Format



	synthetic_data9.csv

	Canonical

	1338

	1000

	8

	Generator(=9)

	Duration type datasets in Long Format



	synthetic_data10.csv

	Canonical

	12000

	2000

	9

	Generator(=10)

	Credit Rating Migrations in Long Format / Compact Form



	test.csv

	Compact

	14

	7

	3

	
	







Transition Matrices


	generic_monthly


	generic_multiperiod


	JLT


	sp 2017








          

      

      

    

  

    
      
          
            
  
Preprocessing

The preprocessing stage includes preparatory steps leading up to the matrix Estimation to produce a transition matrix (or matrix set).

The precise steps required depend on the sources of data, the nature of data, use specific requirements (best practices, regulation etc) and, not least, the desired estimation method.



	Input Data Formats
	Long Data Format

	Compact Form of Long Format

	Wide Data Format

	Other Formats





	State Spaces
	Example: Map credit ratings between systems





	Cohorts
	Cohorting Utilities

	Intermediate Cohort Data Formats

	Cohorting Examples












          

      

      

    

  

    
      
          
            
  
Input Data Formats

The transitionMatrix package supports a variety of input data formats for empirical (observation) data. Two key ones are described here in more detail. More background about data formats is available at the Open Risk Manual Risk Data Category [https://www.openriskmanual.org/wiki/Category:Risk_Data]


Long Data Format

Long Data Format is a tabular representation of time series data that records the states (measurements) of multiple entities. Its defining characteristic is that each table row contains data pertaining to one entity at one point in time.


Canonical Form of Long Data

The Long Data Format (also Narrow or Stacked) consists of Tuples, e.g. (Entity ID, Time, From State, To State) indicating the time T at which an entity with ID migrated from the (From State) -> to the (To State).

The canonical form used as input to duration based estimators uses normalized timestamps (from 0 to T_max, where T_max is the last timepoint) and looks as follows:










	ID

	Time

	From

	To



	1

	1.1

	0

	1



	1

	2.0

	1

	2



	1

	3.4

	2

	3



	1

	4.0

	3

	2



	2

	1.2

	0

	1



	2

	2.4

	1

	2



	2

	3.5

	2

	3









The canonical form has the advantage of being unambiguous about the context where the transition occurs. The meaning of each row of data stands on its own and does not rely on the order (or even the presence) of other records. This facilitates, for example, the algorithmic processing of the data. On the flipside,  the format is less efficient in terms of storage (the state information occurs twice) compared to the compact format (See below).

The canonical format requires that the final state of all entities at the end of the observation window (Time F) is included (otherwise we have no indication about when the measurements stopped). Alternatively such information is provided as separate metadata (or implicitly, for example if measurements are understood to span a number of full annual periods).


Note

Synthetic_data(7, 8, 9) in the Datasets collection are examples of data in long format and canonical form





String Dates

It is frequent that transition data (e.g. from financial applications) have timestamps in the form of a date string. For example:










	ID

	Date String

	From

	To



	1

	10-10-2010

	0

	1



	1

	10-11-2010

	1

	2









String dates must be converted to a numerical representation before we can work with the transition data. transitionMatrix offers the transitionMatrix.utils.converters.datetime_to_float() function of transitionMatrix.utils subpackage can be used to convert data into the canonical form.


Note

Synthetic_data9 and rating_data in the Datasets collection have observation times in string data form.






Compact Form of Long Format

The format uses triples (ID, Time, State), indicating the time T at which an entity ID Left its previous state S (the state it migrates to is encoded in the next observation of the same entity). The convention can obviously be reversed to indicate the time of entering a new state (in which case we need some information to bound the start of the observation window).

The compact long format avoids the duplication of data of the canonical approach but requires the presence of other records to infer the realised sequence of events.

The format also requires that the final state of all entities at the end of the observation window (Time F) is included as the last record (otherwise we have no indication about when the measurements stopped). Alternatively such information is provided separately (or implicitly, e.g. if measurements are understood to span a number of full annual periods).









	ID

	Time

	State



	1

	1.1

	0



	1

	2.0

	1



	1

	3.4

	2



	1

	4.0

	3



	1

	F

	2



	2

	1.2

	0



	2

	2.4

	1



	2

	3.5

	2



	2

	F

	3











Wide Data Format

Wide Data Format is an alternative tabular representation of time series data that records the states (measurements) of multiple entities. Its defining characteristic is that each table row contains all the data pertaining to any one entity. The measurement times are not arbitrary but encoded in the column labels:










	ID

	2011

	2012

	2013



	A1

	1

	0

	1



	A2

	2

	1

	3



	A3

	0

	1

	2









Conversion from wide to long formats can be handled using the pandas wide_to_long method [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.wide_to_long.html].

(This method will be more integrated in the future)



Other Formats

As mentioned, a design choice is that data ingestion of transitionMatrix is via a pandas dataframe so other formats can be handled with additional code by the user. If there is a format that you repeatedly encounter submit an issue with your desired format / transformation suggestion [https://github.com/open-risk/transitionMatrix/issues].





          

      

      

    

  

    
      
          
            
  
State Spaces

A State Space is a fundamental concept in probability theory and computer science representing the possible configurations for a modelled system

The StateSpace object stores a state space structure as a List of tuples. The first two elements of each tuple contain the index (base-0) and label of the state space respectively.

Additional fields are reserved for further characterisation


Example: Map credit ratings between systems


	Script: state_space_operations.py




Example workflows for converting data from one credit rating system to another using an established mapping table





          

      

      

    

  

    
      
          
            
  
Cohorts

Organizing data in cohorts [https://www.openriskmanual.org/wiki/Cohort] can be an important step in understating transition data or towards applying a Cohort Estimator. Cohorts in this context are understood as the grouping of entities within a temporal interval. For example in a credit rating analysis context cohorts could be groups of annual observations. The implication of cohorting data is that the more granular information embedded in a more precise timestamp is not relevant. It is also possible that input data are only available in cohort form (when the precise timestamp information is not recorded at the source)


Note

Cohorting can bias the estimation in various subtle ways, so it is important that any procedure is well documented.




Cohorting Utilities

Cohorting utilities are part of Preprocessing. Presently the core algorithm is implemented in transitionMatrix.utils.preprocessing.bin_timestamps().



Intermediate Cohort Data Formats

The cohort data format is a tabular representation of time series data that records the states (measurements) of multiple entities. Its defining characteristic is that each table row contains data pertaining to one entity at one point in time.

The canonical form used as input to duration based estimators uses normalized timestamps (from 0 to T_max, where T_max is the last timepoint) and looks as follows:










	ID

	Time

	From

	To



	1

	1.1

	0

	1



	1

	2.0

	1

	2



	1

	3.4

	2

	3



	1

	4.0

	3

	2



	2

	1.2

	0

	1



	2

	2.4

	1

	2



	2

	3.5

	2

	3











Cohorting Examples


Cohorting Example 1

An example with limited data (dataset contains only one entity). It is illustrated in script examples/python./matrix_from_duration_data.py with example flag set to 1. Input data set is synthetic_data1.csv

The state space is as follows (for brevity we work directly with the integer representation)

[('0', "A"), ('1', "B"), ('2', "C"), ('3', "D")]





The cohorting algorithm that assigns the last state to the cohort results in the following table. We notice that there is alot of movement inside each cohort (high count) and that only two of the states are represented at the cohort level (0 and 1).

   ID  Cohort State       Time  Count
0   0       0     0   2.061015   21.0
1   0       1     1   4.400105   14.0
2   0       2     0   6.665899   28.0
3   0       3     0   8.842277   14.0
4   0       4     0  11.111733   21.0
5   0       5     0  11.182184    2.0










          

      

      

    

  

    
      
          
            
  
Credit Ratings

Working with credit data is a core use case of transitionMatrix. Functionality that is specific to credit ratings is generally grouped in the credit ratings subpackage (although the distinction of what is generic and what credit specific is not always clear).

The following sections document various credit rating related activities. General documentation about credit rating systems


Contents:


	Predefined Rating Scales
	Rating Scales currently covered

	Data per Scale

	CQS Mappings





	Withdrawn Ratings
	Adjust NR (Not Rated) States

	Multi-period Matrix





	Credit Curves
	Example: Calculate and Plot Credit Curves












          

      

      

    

  

    
      
          
            
  
Predefined Rating Scales

The transitionMatrix package supports a variety of credit rating scales. They are grouped together in transitionMatrix.creditratings.creditsystems.

The key ones are described here in more detail.


Rating Scales currently covered

The focus of the current selection is on long-term issuer ratings scales (others will be added):


	AM Best Europe-Rating Services Ltd.


	ARC Ratings S.A.


	Cerved Rating Agency S.p.A.


	Creditreform Rating AG


	DBRS Ratings Limited


	Fitch Ratings


	Moody’s Investors Service


	Scope Ratings AG


	Standard & Poor’s Ratings Services






Data per Scale

Each rating scale is a StateSpace (see State Spaces) and thus inherits the attributes and methods of that object, namely:


	The entity defining the scale (the originating entity)


	The full name of the scale (as most originators of rating scales offer multiple scales with different meaning an/or use)


	The definition of the scale (as a list of tuples in the form [(‘0’, ‘X1’), … , (‘N-1’, ‘XN)] where X are the symbols used to denote the credit state


	The CQS (credit quality step) mapping of the scale as defined by regulatory authorities (see next section)






CQS Mappings

The Credit Quality Step (CQS) denotes a standardised indicator of Credit Risk that is recognized in the European Union


	The CQS Credit Rating Scale is based on numbers, ranging from 1 to 6.


	1 is the highest quality, 6 is the lowest quality




The European Supervisory Authorities maintain mappings between credit rating agencies and CQS


Note

Consult the original documents from definitive mappings available at the EBA Website [https://eba.europa.eu/regulation-and-policy/external-credit-assessment-institutions-ecai/draft-implementing-technical-standards-on-the-mapping-of-ecais-credit-assessments]



The Rating Agency State Spaces and mappings are obtained from the latest (20 May 2019) Regulatory Reference:

JC 2018 11, FINAL REPORT: REVISED DRAFT ITS ON THE MAPPING OF ECAIS’ CREDIT ASSESSMENTS UNDER CRR






Example of Label Conversion

Convert labels between credit rating scales

[image: _images/scale_conversions.png]





          

      

      

    

  

    
      
          
            
  
Withdrawn Ratings

Withdrawn ratings are a common issue that needs to be handled in the context of estimating transition matrices. See right censoring issues [https://www.openriskmanual.org/wiki/Withdrawn_Ratings]


Adjust NR (Not Rated) States

Adjusting for NR states can be done via the transitionMatrix.model.TransitionMatrix.remove() method.


Single Period Matrix

Example of using transitionMatrix to adjust the (not-rated) NR state. Input data are the Standard and Poor’s historical data (1981 - 2016) for corporate credit rating migrations. Example of handling


	Script: examples/python/adjust_nr_states.py







Multi-period Matrix


	Script: examples/python/fix_multiperiod_matrix.py




Example of using transitionMatrix to detect and solve various pathologies that might be affecting transition matrix data





          

      

      

    

  

    
      
          
            
  
Credit Curves

A Credit Curve denotes a grouping of credit risk metrics (parameters) that provide estimates that a legal entity experiences a Credit Event over different (an increasing sequence of longer) time periods. See Credit Curves [https://www.openriskmanual.org/wiki/Category:Credit_Curve]

A multi-period matrix and a credit curve are closely related objects (under some circumstances the later can be thought of as a subset of the former). The transitionMatrix package offers the following main functionality concerning credit curves:


	The transitionMatrix.creditratings.creditcurve.CreditCurve class for storing and working with credit curves


	The transitionMatrix.model.TransitionMatrixSet.default_curves() transitionMatrixSet method that extracts from a matrix set the default curve





Example: Calculate and Plot Credit Curves

Example of using transitionMatrix to calculate and visualize multi-period


	Script: examples/python/credit_curves.py




[image: _images/credit_curves.png]




          

      

      

    

  

    
      
          
            
  
Estimation

The estimation of a transition matrix is one of the core functionalities of transitionMatrix. Several methods and variations are available in the literature depending on aspects such as:


	The nature of the observations / data (e.g., whether temporal homogeneity is a valid assumption)


	Whether or not there are competing risk effects


	Whether or not observations have coincident values


	Treating the Right-Censorship of observations (Outcomes beyond the observation window)


	Treating the Left-Truncation of observations (Outcomes prior to the the observation window)





Estimator Types


	Cohort Based Methods that group observations in cohorts


	Duration (also Hazard Rate or Intensity) Based Methods that utilize the actual duration of each state




The main estimators currently implemented are as follows:


Implemented Estimators


	Simple Estimator

	Cohort Estimator

	Aalen-Johansen Estimator





Whichever the estimator choice, the outcome of the estimation is an Empirical Transition Matrix (or potentially a matrix set)


Implementation Notes


	All estimators derive from the highest level BaseEstimator class.


	Duration type estimators derive from the DurationEstimator class







Estimation Examples

The first example of estimating a transition matrix is covered in the Getting Started section. Here we have a few more examples:


Estimation Example 1

Example workflows using transitionMatrix to estimate an empirical transition matrix from duration type data. The datasets are produced using examples/generate_synthetic_data.py This example uses the
Aalen-Johansen estimator [https://www.openriskmanual.org/wiki/Aalen-Johansen_Estimator]


	Script: examples/python/empirical_transition_matrix.py




By setting the example variable the script covers a number of variations:


	Version 1: Credit Rating Migration example


	Version 2: Simple 2x2 Matrix for testing


	Version 3: Credit Rating Migration example with timestamps in raw date format




Plot of estimated transition probabilities

[image: _images/transition_probabilities.png]


Estimation Example 2

Example workflows using transitionMatrix to estimate a transition matrix from data that are in duration format. The datasets are first grouped in period cohorts


	Script: examples/python/matrix_from_duration_data.py









          

      

      

    

  

    
      
          
            
  
Simple Estimator

The estimation of a transition matrix is one of the core functionalities of transitionMatrix. The two main estimators currently implemented are:




          

      

      

    

  

    
      
          
            
  
Cohort Estimator

A cohort estimator (more accurately discrete time estimator) is class of estimators of multi-state transitions that is a simpler alternative to Duration type estimators


Estimate a Transition Matrix from Cohort Data

Example workflows using transitionMatrix to estimate a transition matrix from data that are already grouped in cohorts


	Script: examples/python/matrix_from_cohort_data.py


	Example ID: 3




data = pd.read_csv(dataset_path + 'synthetic_data6.csv', dtype={'State': str})
sorted_data = data.sort_values(['ID', 'Timestep'], ascending=[True, True])
myState = tm.StateSpace()
myState.generic(2)
print(myState.validate_dataset(dataset=sorted_data))
myEstimator = es.CohortEstimator(states=myState, ci={'method': 'goodman', 'alpha': 0.05})
result = myEstimator.fit(sorted_data)
myMatrixSet = tm.TransitionMatrixSet(values=result, temporal_type='Incremental')

myEstimator.print(select='Counts', period=0)
myEstimator.print(select='Frequencies', period=18)









          

      

      

    

  

    
      
          
            
  
Aalen-Johansen Estimator

The Aalen-Johansen estimator is a multi-state (matrix) version of the Kaplan–Meier estimator for the hazard of a survival process. The estimator can be used to estimate the transition probability matrix of a Markov process with a finite number of states. See [https://www.openriskmanual.org/wiki/Aalen-Johansen_Estimator]




          

      

      

    

  

    
      
          
            
  
Post-processing

The post-processing stage includes steps and activities after the estimation of a transition matrix. The precise steps required depend on specific circumstances but might involve some of the following:


	“Fixing” a matrix by correcting deficiencies linked to data quality


	Obtaining the infinitesimal generator of a matrix, a powerful tool for further analysis


	Working with multi-period matrices


	Visualizing transition datasets and transition frequencies






	Basic Operations
	Simple Operation Examples

	Validating, Fixing and Characterizing a matrix





	Working with an actual matrix

	Multi-Period Transitions
	Matrix Set Operations





	Visualization
	Visualization Examples












          

      

      

    

  

    
      
          
            
  
Basic Operations

The core TransitionMatrix object implements a typical (one period) transition matrix. It supports a variety of operations (more details are documented in the API section)


	Initialize a matrix (from data, predefined matrices etc)


	Validate a matrix


	Attempt to fix a matrix


	Compute generators, powers etc.


	Print a matrix


	Output to json/csv/xlsx formats


	Output to html format





Simple Operation Examples


Note

The script examples/python/matrix_operations.py contains the below and plenty more simple single matrix examples




Initialize a matrix with values

There is a growing list of ways to initialize a transition matrix


	Initialize a generic matrix of dimension n


	Any list can be used for initialization (but not all shapes are valid transition matrices!)


	Any numpy array can be used for initialization (but not all are valid transition matrices!)


	Values can be loaded from json or csv files


	The transitionMatrix.creditratings.predefined module includes a number of predefined matrices




A = tm.TransitionMatrix(values=[[0.6, 0.2, 0.2], [0.2, 0.6, 0.2], [0.2, 0.2, 0.6]])
print(A)
A.print_matrix(format_type='Standard', accuracy=2)

[[0.6 0.2 0.2]
 [0.2 0.6 0.2]
 [0.2 0.2 0.6]]

0.60 0.20 0.20
0.20 0.60 0.20
0.20 0.20 0.60

A.print_matrix(format_type='Standard', accuracy=2)

60.0% 20.0% 20.0%
20.0% 60.0% 20.0%
20.0% 20.0% 60.0%





Both the intrinsic print function and the specific print_matrix will print you the matrix, but the print_matrix method clearly aims to present the values in a more legible formats.



General Matrix Algebra


Note

All standard numerical matrix operations are available as per the numpy API.



Some example operations that leverage the underlying numpy API:

E = tm.TransitionMatrix(values=[[0.75, 0.25], [0.0, 1.0]])
print(E.validate())
# ATTRIBUTES
# Getting matrix info (dimensions, shape)
print(E.ndim)
print(E.shape)
# Obtain the matrix transpose
print(E.T)
# Obtain the matrix inverse
print(E.I)
# Summation methods:
# - along columns
print(E.sum(0))
# - along rows
print(E.sum(1))
# Multiplying all elements of a matrix by a scalar
print(0.01 * A)
# Transition Matrix algebra is very intuitive
print(A * A)
print(A ** 2)
print(A ** 10)








Validating, Fixing and Characterizing a matrix


Validate a Matrix

The validate() method of the object checks for required properties of a valid transition matrix:



	check squareness


	check that all values are probabilities (between 0 and 1)


	check that all rows sum to one







C = tm.TransitionMatrix(values=[1.0, 3.0])
print(C.validate())

[('Matrix Dimensions Differ: ', (1, 2))]







Characterise a Matrix

The characterise() method attempts to characterise a matrix



	diagonal dominance












          

      

      

    

  

    
      
          
            
  
Working with an actual matrix

The core capability of transitionMatrix is to produce estimated matrices but getting a realistic example requires quite some work. In this section we assume we have estimated one.

Lets look at a realistic example from the JLT paper

# Reproduce JLT Generator
# We load it using different sources
E = tm.TransitionMatrix(values=JLT)
E_2 = tm.TransitionMatrix(json_file=dataset_path + "JLT.json")
E_3 = tm.TransitionMatrix(csv_file=dataset_path + "JLT.csv")
# Lets check there are no errors
Error = E - E_3
print(np.linalg.norm(Error))
# Lets look at validation and generators"
# Empirical matrices will not satisfy constraints exactly
print(E.validate(accuracy=1e-3))
print(E.characterize())
print(E.generator())
Error = E - expm(E.generator())
# Frobenious norm
print(np.linalg.norm(Error))
# L1 norm
print(np.linalg.norm(Error, 1))
# Use pandas style API for saving to files
E.to_csv("JLT.csv")
E.to_json("JLT.json")








          

      

      

    

  

    
      
          
            
  
Multi-Period Transitions

Th transitionMatrix package adopts a multi-period paradigm that is more general than a Markov-Chain framework that imposes the Markov assumption over successive periods. In this direction, the TransitionMatrixSet object stores a family of TransitionMatrix objects as a time ordered list. Besides basic storage this structure allows a variety of simultaneous operations on the collection of related matrices

There are two basic representations of the a multi-period set of transitions:


	The first (cumulative form) is the most fundamental. Each successive (k-th) element stores transition rates from an initial time to timepoint k. This could be for example the input of an empirical transition matrix dataset


	In the second (incremental form) successive elements store transition rates from timepoint k-1 to timepoint k.




The TransitionMatrixSet class allows converting between the two representations


Matrix Set Operations


	Script: matrix_set_operations.py




Contains examples using transitionMatrix to perform various transition matrix set operations (Multi-period measurement context)


Default Curves

Absorbing states (in credit risk context a borrower default) are particularly important therefore some specific functionality to isolate the corresponding default rate curve. (See Also the CreditCurve object)






          

      

      

    

  

    
      
          
            
  
Visualization

transitionMatrix aims to support native (Python based) visualization of various transition related datasets using matplotlib and other native python visualization libraries.


Note

The visualization functionality is not yet refactored into a reusable API. For now the visualization functionality is implemented separately as a demo script.




Visualization Examples

Example workflows using transitionMatrix to generate visualizations of migration phenomena


	Script: examples/python/generate_visuals.py





Example 1

Plotting the state space trajectory of a single entity

[image: _images/single_entity.png]


Example 2

Plotting the state space trajectory of multiple entities

[image: _images/sampled_histories.png]


Example 3

Histogram plot of transition frequencies

[image: _images/estimation.png]


Example 4

Colored scatterplot of entity transitions over time

[image: _images/scatterplot.png]


Example 5

Colored scatterplot of entity transitions over time (alternative form)

[image: _images/scatterplot2.png]


Example 6

Visualize a transition matrix using Hinton-style visual

[image: _images/TransitionMatrix.png]


Example 7

Visualize a transition matrix using a sankey visual (a logarithmic adaptation that is useful for qualitative insight)

[image: _images/sankey.png]





          

      

      

    

  

    
      
          
            
  
Data Generators

The transitionMatrix distribution includes a number of data generators to support testing / training objectives.


	exponential_transitions: Generate continuous time events from exponential distribution and uniform sampling from state space. Suitable for testing cohorting algorithms and duration based estimators.


	markov_chain: Generate discrete events from a markov chain matrix in Compact data format. Suitable for testing cohort based estimators


	long_format: Generate continuous events from a markov chain matrix in Long data format. Suitable for testing duration based estimators


	portfolio_lables: Generate a collection of credit rating states emulating a snapshot of portfolio data. Suitable for mappings and transformations of credit rating states





Note

Do not confuse data generators with matrix generators




Data Generation Examples

All data data generation examples are in script examples/python/generate_synthetic_data.py





          

      

      

    

  

    
      
          
            
  
Federation


Credit Rating Ontology

The Credit Ratings Ontology is a framework that aims to represent and categorize knowledge about Credit Rating Agencies and related data (Credit Ratings) using semantic web information technologies.

This is a new project, related resources can be found here:


	Online documentation [https://www.openriskmanual.org/ns/cro/index-en.html]


	Blog post [https://www.openriskmanagement.com/risk-management-ontologies/]


	Course [https://www.openriskacademy.com/course/view.php?id=60]


	Repo with ontology usage examples [https://github.com/open-risk/Academy-Course-PYT26060]





Note

transitionMatrix functionality to federate semantically annotated credit data is planned







          

      

      

    

  

    
      
          
            
  
Usage Examples

The examples directory includes both standalone python scripts and jupyter notebooks to help you get started. (NB: Currently there are more scripts than notebooks).

A selection of topics covered:


	Generating transition matrices from data (using various estimators)


	Manipulating transition matrices


	Computing and visualizing credit curves corresponding to a set of transition matrices


	Mapping rating states between different rating systems





Python Scripts

The scripts are located in examples/python. For testing purposes all examples can be run using the run_examples.py script located in the root directory. Some scripts have an example flag that selects alternative input data or estimators.


List of Example Scripts







	Script Name

	Flag

	Input Data

	Description





	adjust_nr_state.py

	1

	
	Adjust the NR (not-rated) statistics.



	adjust_nr_state.py

	2

	
	Adjust the NR (not-rated) statistics.



	credit_curves.py

	
	
	Compute and Visualize credit curves



	characterize_datasets.py

	
	
	Load the available datasets and compute various statistics



	compare_estimators.py

	
	synthetic_data4.csv

	Compare the cohort and aalen-johansen estimators on a discrete timestep sample



	data_cleaning_example.py

	
	rating_data_raw.csv

	Prepare transition data sets (data cleansing) using some provided methods



	deterministic_paths.py

	
	
	Create a transition dataset by replicating give trajectories through a graph



	empirical_transition_matrix.py

	1

	synthetic_data7.csv

	Credit Rating Migration example



	empirical_transition_matrix.py

	2

	synthetic_data8.csv

	Simple 2x2 Matrix for testing



	empirical_transition_matrix.py

	3

	synthetic_data9.csv

	Credit Rating Migration example with timestamps in raw date format



	estimate_matrix.py

	
	rating_data.csv

	An end-to-end example of estimating a credit rating matrix from historical data



	fix_multiperiod_matrix.py

	
	sp_1981-2016.csv

	Detect and solve various pathologies that might be affecting transition matrix data



	generate_full_multiperiod_set.py

	
	sp_NR_adjusted.json

	Use infinitesimal generator methods to generate a full multi-period matrix set.



	generate_synthetic_data.py

	1

	
	Generate synthetic data. The first set of examples produces duration type data.



	generate_synthetic_data.py

	2

	
	The second set of examples produces cohort type data using markov chain simulation



	generate_synthetic_data.py

	3

	
	The second set of examples produces cohort type data using markov chain simulation



	generate_visuals.py

	6

	JLT.json

	Plot Transition Probabilities



	generate_visuals.py

	7

	JLT.json

	Logarithmic Sankey Diagram of Credit Migration Rates



	generate_visuals.py

	5

	scenario_data.csv

	Plot Entity Transitions Plot



	generate_visuals.py

	1

	synthetic_data1.csv

	Step Plot of a single observation



	generate_visuals.py

	4

	synthetic_data3.csv

	Entity Transitions Plot



	generate_visuals.py

	2

	synthetic_data4.csv

	Step Plot of individual observations



	generate_visuals.py

	3

	synthetic_data5.csv

	Histogram Plots of transition frequencies



	matrix_from_cohort_data.py

	3

	synthetic_data4.csv

	S&P Style Credit Rating Migration Matrix



	matrix_from_cohort_data.py

	2

	synthetic_data5.csv

	IFRS 9 Style Migration Matrix (Large sample for testing)



	matrix_from_cohort_data.py

	1

	synthetic_data6.csv

	Simplest Absorbing Case for validation



	matrix_from_duration_data.py

	1

	synthetic_data1.csv

	Duration example with limited data (dataset contains only one entity)



	matrix_from_duration_data.py

	2

	synthetic_data2.csv

	Duration example n entities with ~10 observations each, [0,1] state, 50%/50% transition matrix



	matrix_from_duration_data.py

	3

	synthetic_data3.csv

	


	matrix_lendingclub.py

	
	
	Estimate a matrix from LendingClub data. Input data are in a special cohort format as the published datasets have some limitations



	matrix_operations.py

	
	
	Perform various transition matrix operations illustrating the matrix algebra



	matrix_set_lendingclub.py

	
	
	Estimate a matrix from LendingClub data. Input data are in a special cohort format as the published datasets have some limitations



	matrix_set_operations.py

	
	
	Perform operations with multi-period transition matrix sequences



	state_space_operations.py

	
	
	Examples working with state spaces (mappings)








Jupyter Notebooks


	Adjust_NotRated_State.ipynb


	Matrix_Operations.ipynb


	Monthly_from_Annual.ipynb






Open Risk Academy Scripts

Additional examples are available in the Open Risk Academy course Analysis of Credit Migration using Python TransitionMatrix [https://www.openriskacademy.com/course/management.php?categoryid=26&courseid=38]. The scripts developed in the course are available here [https://github.com/open-risk/Academy-Course-PYT26038]





          

      

      

    

  

    
      
          
            
  
API

The transitionMatrix package structure and API.


Warning

The library is still being expanded / refactored. Significant structure and API changes are likely.





	transitionMatrix Package
	transitionMatrix Classes





	transitionMatrix Subpackages
	Estimators SubPackage

	State Spaces SubPackage

	Credit Ratings SubPackage

	Generators SubPackage

	Visualization subpackage

	Utilities SubPackage












          

      

      

    

  

    
      
          
            
  
transitionMatrix Package

The core module


transitionMatrix Classes


TransitionMatrix



TransitionMatrixSet



EmpiricalTransitionMatrix


Todo

This is future functionality







transitionMatrix Subpackages



	Estimators SubPackage
	transitionMatrix.estimators.simple_estimator module

	transitionMatrix.estimators.cohort_estimator module

	transitionMatrix.estimators.aalen_johansen_estimator module

	transitionMatrix.estimators.kaplan_meier_estimator module





	State Spaces SubPackage
	transitionMatrix.statespaces.statespace module





	Credit Ratings SubPackage
	transitionMatrix.creditratings.creditcurve module

	transitionMatrix.creditratings.creditsystems module

	transitionMatrix.creditratings.predefined module





	Generators SubPackage
	transitionMatrix.generators contents





	Visualization subpackage
	transitionMatrix.visualization contents





	Utilities SubPackage
	transitionMatrix.utils.converters module

	transitionMatrix.utils.preprocessing module












          

      

      

    

  

    
      
          
            
  
Estimators SubPackage

This subpackage implements the various estimators


transitionMatrix.estimators.simple_estimator module



transitionMatrix.estimators.cohort_estimator module



transitionMatrix.estimators.aalen_johansen_estimator module



transitionMatrix.estimators.kaplan_meier_estimator module


Todo

This is future functionality







          

      

      

    

  

    
      
          
            
  
State Spaces SubPackage

This subpackage implements state space functionality


transitionMatrix.statespaces.statespace module





          

      

      

    

  

    
      
          
            
  
Credit Ratings SubPackage

This subpackage collects credit rating specific functionality


transitionMatrix.creditratings.creditcurve module



transitionMatrix.creditratings.creditsystems module



transitionMatrix.creditratings.predefined module





          

      

      

    

  

    
      
          
            
  
Generators SubPackage

This subpackage implements test data generation


transitionMatrix.generators contents





          

      

      

    

  

    
      
          
            
  
Visualization subpackage

This subpackage implements visualization functionality


Warning

not yet implemented




transitionMatrix.visualization contents





          

      

      

    

  

    
      
          
            
  
Utilities SubPackage

This subpackage collects various utilities


transitionMatrix.utils.converters module



transitionMatrix.utils.preprocessing module





          

      

      

    

  

    
      
          
            
  
Testing

Testing transitionMatrix has two major components:


	normal code testing aiming to certify the correctness of code execution


	algorithm testing aiming to validate the correctness of algorithmic implementation





Note

In general algorithmic testing is not as precise as code testing and may be more subject to uncertainties such as numerical accuracy. To make those tests as revealing as possible transitionMatrix implements a number of standardized round-trip tests:


	starting with a matrix


	generating compatible data


	estimate a matrix from the data


	comparing the values of input and estimated matrices







Running all the examples

Running all the examples is a quick way to check that everything is installed properly, all paths are defined etc. At the root of the distribution:

python3 run_examples.py





The file simply iterates and executes a standalone list of Usage Examples.

filelist = ['adjust_nr_state', 'credit_curves', 'empirical_transition_matrix', 'fix_multiperiod_matrix', 'generate_synthetic_data', 'generate_visuals', 'matrix_from_cohort_data', 'matrix_from_duration_data', 'matrix_lendingclub', 'matrix_set_lendingclub', 'matrix_operations', 'matrix_set_operations']






Warning

The script might generate a number of files / images at random places within the distribution





Test Suite

The testing framework is based on unittest. Before you get started and depending on how you obtained / installed the library check:


	If required adjust the source directory path in transitionMatrix/__init__


	Unzip the data files in the datasets directory




Then run all tests

python3 test.py





For an individual test:

pytest tests/test_TESTNAME.py









          

      

      

    

  

    
      
          
            
  
Roadmap

transitionMatrix is an ongoing project. Several significant extensions are already in the pipeline. transitionMatrix aims to become the most intuitive and versatile tool to analyse discrete transition data. The Roadmap lays out upcoming steps / milestones in this journey. The Todo list is a more granular collection of outstanding items.

You are welcome to contribute to the development of transitionMatrix by creating Issues or Pull Requests on the github repository. Feature requests, bug reports and any other issues are welcome to log at the Github Repository [https://github.com/open-risk/transitionMatrix/issues]

Discussing general usage of the library is happening here [https://www.openriskcommons.org/t/analysis-of-credit-migration-using-python-transitionmatrix/74]


0.5

The 0.5 will be the next major release (still considered alpha) that will be available e.g. on PyPI



0.4.X

The 0.4.X family of updates will focus on rounding out and (above all) documenting a number of functionalities already introduced




Todo List

A list of todo items, no triaging / prioritisation implied


Core Architecture and API


	Introduce exceptions / error handling throughout


	Solve numpy.matrix deprecation (implement equivalent API in terms of ndarray)


	Complete testing framework






Input Data Preprocessing


	Handing of markov chain transition formats (single entity)


	Native handling of Wide Data Formats (concrete data sets missing)


	Generalize cohorting algorithm to user specified function






Reference Data


	Additional credit rating scales (e.g short term ratings)


	Integration with credit rating ontology






Transition Matrix Analysis Functionality


	Further validation and characterisation of transition matrices (mobility indexes)


	Generate random matrix subject to constraints


	Fixing common problems encountered by empirically estimated transition matrices






Statistical Analysis Functionality


	
	Aalen Johansen Estimator

	
	Covariance calculation


	Various other improvements / tests










	
	Cohort Estimator

	
	Read Data by labels


	Edge cases










	
	Kaplan Meier Estimator NEW

	
	(link to survival frameworks)










	Duration based methods


	Bootstrap based confidence intervals






State Space package


	Multiple absorbing states (competing risks)


	Automated coarsening of states (merging of similar)






Credit Rating Related


	Import data defined according to CRO ontology


	Absorbing State Identification, Competing Risks


	Compute hazard rates


	Characterize hazard rates






Utilities


	Continuous time data generation from arbitrary chain






Further Refactoring of packages


	Introduce visualization objects / API






Performance / Big data


	Handling very large data sets, moving away from in-memory processing






Documentation


	Sphinx documentation (complete)


	Expand the jupyter notebook collection to (at least) match the standalone scripts






Releases / Distribution


	Adopt regular github/PyPI release schedule


	Conda distribution








          

      

      

    

  

    
      
          
            
  
ChangeLog

PLEASE NOTE THAT THE API OF TRANSITION MATRIX IS STILL UNSTABLE AS MORE USE CASES / FEATURES ARE ADDED REGULARLY


v0.5.0 (21-02-2022)


	
	Installation:

	
	Bump python dependency to 3.7


	PyPI release update














v0.4.9 (04-05-2021)


	
	Refactoring: All non-core functionality moved to separate directories/sub-packages

	
	credit curve stuff moved to creditratings modules


	data generators moved to generators modules


	etc.










	
	Documentation: Major expansion (Still incomplete)

	
	Expanded Data Formats


	Rating Scales, CQS etc


	Listing all datasets and examples










	
	Testing / Training: An interesting use case raised as issue #20

	
	Added an end-to-end example of estimating a credit rating matrix from raw data


	Includes various data preprocessing examples










	
	Datasets:

	
	rating_data.csv (cleaned up credit data)


	synthetic_data10.csv Credit Rating Migrations in Long Format / Compact Form (for testing)


	deterministic generator (replicate given trajectories)










	
	Tests:

	
	test_roundtrip.py testing via roundtriping methods














v0.4.8 (07-02-2021)


	Documentation: Pulled all rst files in docs


	Refactoring: credit rating data moved into separate module






v0.4.7 (29-09-2020)


	Documentation: Expanded and updated description of classes


	Documentation: Including Open Risk Academy code examples


	Feature: logarithmic sankey visualization






v0.4.6 (22-05-2019)


	Feature: Update of CQS Mappings, addition of new rating scales


	Documentation: Documentation of rating scale structure and mappings


	Training: Example of mapping portfolio data to CQS






v0.4.5 (21-04-2019)


	Training: Monthly_from_Annual.ipynb (a Jupyter notebook illustrating how to obtain interpolate transition rates on monthly intervals)


	Datasets: generic_monthly.json


	Feature: print_matrix function for generic matrix pretty printing


	Feature: matrix_exponent function for obtaining arbitrary integral matrices from a given generator






v0.4.4 (03-04-2019)


	Documentation: Cleanup of docs following separation of threshold / portfolio models


	Datasets: generic_multiperiod.json


	Feature: CreditCurve class for holding credit curves






v0.4.3 (29-03-2019)


	Refactoring: Significant rearrangement of code (the threshold models package moved to portfolioAnalytics for more consistent structure of the code base / functionality)






v0.4.2 (29-01-2019)


	Feature: converter function in transitionMatrix.utils.converters to convert long form dataframes into canonical float form


	Datasets: synthetic_data9.csv (datetime in string format)


	Training: new data generator in examples/generate_synthetic_data.py to generate long format with string dates


	Training: Additional example (=3) in examples/empirical_transition_matrix.py to process long format with string dates


	Documentation: More detailed explanation of Long Data Formats with links to Open Risk Manual


	Documentation: Enabled sphinx.ext.autosectionlabel for easy internal links / removed duplicate labels






v0.4.1 (31-10-2018)


	Feature: Added functionality for conditioning multi-period transition matrices


	Training: Example calculation and visualization of conditional matrices


	Datasets: State space description and CGS mappings for top-6 credit rating agencies






v0.4.0 (23-10-2018)


	Installation: First PyPI and wheel installation options


	Feature: Added Aalen-Johansen Duration Estimator


	Documentation: Major overhaul of documentation, now targeting ReadTheDocs distribution


	Training: Streamlining of all examples


	Datasets: Synthetic Datasets in long format






v0.3.1 (21-09-2018)


	Feature: Expanded functionality to compute and visualize credit curves






v0.3 (27-08-2018)


	Feature: Addition of portfolio models (formerly portfolio_analytics_library) for data generation and testing


	Training: Added examples in jupyter notebook format






v0.2 (05-06-2018)


	Feature: Addition of threshold generation algorithms






v0.1.3 (04-05-2018)


	Documentation: Sphinx based documentation


	Training: Additional visualization examples






v0.1.2 (05-12-2017)


	Refactoring: Dataset paths


	Bugfix: Correcting requirement dependencies (missing matplotlib)


	Documentation: More detailed instructions






v0.1.1 (03-12-2017)


	Feature: TransitionMatrix model: new methods to merge States, fix problematic probability matrices, I/O API’s


	Feature: TransitionMatrixSet mode: json and csv readers, methods for set-wise manipulations


	Datasets: Additional multiperiod datasets (Standard and Poors historical corporate rating transition rates)


	Feature: Enhanced matrix comparison functionality


	
	Training: Three additional example workflows

	
	fixing multiperiod matrices (completing State Space)


	adjusting matrices for withdrawn entries


	generating full  multi-period sets from limited observations














v0.1.0 (11-11-2017)


	First public release of the package








          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          transitionMatrix Documentation
        


        		
          The transitionMatrix Library
          
            		
              Functionality
            


            		
              Architecture
            


          


        


        		
          Installation
          
            		
              Dependencies
            


            		
              From PyPI
            


            		
              From sources
            


            		
              Using virtualenv
            


            		
              File structure
            


            		
              Other similar open source software
            


          


        


        		
          Getting Started
          
            		
              The transitionMatrix components
            


            		
              An end-to-end usage example from credit risk
              
                		
                  Step 1: Loading the data
                


                		
                  Step 2: Understanding the data format
                


                		
                  Step 3: Data cleaning and normalization
                


                		
                  Step 4: Establish the State Space
                


              


            


            		
              Further Resources
              
                		
                  Examples Directory
                


                		
                  Open Risk Academy
                


              


            


          


        


        		
          Input Data Formats
          
            		
              Long Data Format
              
                		
                  Canonical Form of Long Data
                


                		
                  String Dates
                


              


            


            		
              Compact Form of Long Format
            


            		
              Wide Data Format
            


            		
              Other Formats
            


          


        


        		
          Datasets
          
            		
              State Transition Data
            


            		
              Transition Matrices
            


          


        


        		
          Preprocessing
          
            		
              Input Data Formats
              
                		
                  Long Data Format
                


                		
                  Compact Form of Long Format
                


                		
                  Wide Data Format
                


                		
                  Other Formats
                


              


            


            		
              State Spaces
              
                		
                  Example: Map credit ratings between systems
                


              


            


            		
              Cohorts
              
                		
                  Cohorting Utilities
                


                		
                  Intermediate Cohort Data Formats
                


                		
                  Cohorting Examples
                


              


            


          


        


        		
          Credit Ratings
          
            		
              Predefined Rating Scales
              
                		
                  Rating Scales currently covered
                


                		
                  Data per Scale
                


                		
                  CQS Mappings
                


              


            


            		
              Withdrawn Ratings
              
                		
                  Adjust NR (Not Rated) States
                


                		
                  Multi-period Matrix
                


              


            


            		
              Credit Curves
              
                		
                  Example: Calculate and Plot Credit Curves
                


              


            


          


        


        		
          Estimation
          
            		
              Estimator Types
              
                		
                  Simple Estimator
                


                		
                  Cohort Estimator
                


                		
                  Aalen-Johansen Estimator
                


                		
                  Implementation Notes
                


              


            


            		
              Estimation Examples
              
                		
                  Estimation Example 1
                


                		
                  Estimation Example 2
                


              


            


          


        


        		
          Post-processing
          
            		
              Basic Operations
              
                		
                  Simple Operation Examples
                


                		
                  Validating, Fixing and Characterizing a matrix
                


              


            


            		
              Working with an actual matrix
            


            		
              Multi-Period Transitions
              
                		
                  Matrix Set Operations
                


              


            


            		
              Visualization
              
                		
                  Visualization Examples
                


              


            


          


        


        		
          Data Generators
          
            		
              Data Generation Examples
            


          


        


        		
          Federation
          
            		
              Credit Rating Ontology
            


          


        


        		
          Usage Examples
          
            		
              Python Scripts
            


            		
              Jupyter Notebooks
            


            		
              Open Risk Academy Scripts
            


          


        


        		
          API
          
            		
              transitionMatrix Package
              
                		
                  transitionMatrix Classes
                


              


            


            		
              transitionMatrix Subpackages
              
                		
                  Estimators SubPackage
                


                		
                  State Spaces SubPackage
                


                		
                  Credit Ratings SubPackage
                


                		
                  Generators SubPackage
                


                		
                  Visualization subpackage
                


                		
                  Utilities SubPackage
                


              


            


          


        


        		
          Testing
          
            		
              Running all the examples
            


            		
              Test Suite
            


          


        


        		
          Roadmap
          
            		
              0.5
            


            		
              0.4.X
            


          


        


        		
          Todo List
          
            		
              Core Architecture and API
            


            		
              Input Data Preprocessing
            


            		
              Reference Data
            


            		
              Transition Matrix Analysis Functionality
            


            		
              Statistical Analysis Functionality
            


            		
              State Space package
            


            		
              Credit Rating Related
            


            		
              Utilities
            


            		
              Further Refactoring of packages
            


            		
              Performance / Big data
            


            		
              Documentation
            


            		
              Releases / Distribution
            


          


        


        		
          ChangeLog
          
            		
              v0.5.0 (21-02-2022)
            


            		
              v0.4.9 (04-05-2021)
            


            		
              v0.4.8 (07-02-2021)
            


            		
              v0.4.7 (29-09-2020)
            


            		
              v0.4.6 (22-05-2019)
            


            		
              v0.4.5 (21-04-2019)
            


            		
              v0.4.4 (03-04-2019)
            


            		
              v0.4.3 (29-03-2019)
            


            		
              v0.4.2 (29-01-2019)
            


            		
              v0.4.1 (31-10-2018)
            


            		
              v0.4.0 (23-10-2018)
            


            		
              v0.3.1 (21-09-2018)
            


            		
              v0.3 (27-08-2018)
            


            		
              v0.2 (05-06-2018)
            


            		
              v0.1.3 (04-05-2018)
            


            		
              v0.1.2 (05-12-2017)
            


            		
              v0.1.1 (03-12-2017)
            


            		
              v0.1.0 (11-11-2017)
            


          


        


      


    
  

_static/up-pressed.png





_static/plus.png





_images/credit_curves.png
Credit Curves of Generic Transition Matrix

— RI=0
08— Ri=1
— RI=2
— Ri=3
® 0.6
8
2
&
£ 04
a
@
H
B
E
E 02
3
0.0 _— —
0 2 4 6 8

Periods





_images/estimation.png
Cohort 2 Cohort 1 Cohort 0

Cohort 3

0.8
0.6
0.4
02
0.0

0.8
0.6
0.4
02
0.0

0.8
0.6
0.4
02
0.0

0.8
0.6
0.4
02
0.0

From Stage 1

From Stage 2

From Stage 3

Jo1
0.6
05
03
03
02
0.
;i 0.
[ 1 2
T T 07
0.
05
03
03
02
o1
: ] 0.0
[ 1 2
’ T q o7
0.6
105
oz
03
o2
o1
: | 0.0
0 1 2
r T Jo7
06
Ho
0.
1o
Jo
0
) | 0
0 1 2






_images/Architecture_Overview.png
trausitionMatrix

Pre-Processing || > Estimation Post-Processing
Goneral Use Cose | | Dot Format Transformations " Cohort Methods " Matrix Algebra "
Data Generators o Duration Methods o Infinitesimal Generators o
Statistics Visualization
Predefined Seales " Credit Curves " Fixing Rating Matrices i

Credit Ratings

Mappiugs between Scales

Multiperiod Migrations






_images/TransitionMatrix.png
From State

107%

filgeqeld uor:





_images/sampled_histories.png
Sampled Entities IDs: 348 827 404 444 648

) ) | 1D: 348 )

7- ° ° ° ° ° °-

6- -

5- -
) ) ID: 827 )

7- ° ° ° ° ° ° °-

6- -
) ) | ID: 404 )

4- -

3-) . ° ° ° ° °-
, , | ID: 444 ,

1- -

0-e ° ° ° ° ) -
) ) | 1D: 648 )

ER ° ° ° ° ° ° -

2- -
4 2 4 6





_images/sankey.png
Logarithmic Sankey Diagram of Credit Migration Rates

Aam AA A BBB

- BB

D ccc B






_images/overview.png
Sampled Entities [Ds: 348 827 404 444 645 Multi-period Transition Probabilities

1D 348 1.00 1.00
pfsiaaaaeon ML Baanaas=n
E 0.50 E 0.50
10827 & 025 /-"_-4“—’ & 025 2
000 0.00
100 1.00
o ~N 075 \ Q07 \
10: 404 £ os0 £ os0
- s =
) [E==—ammm| R g ===
0.00 0.00
1.00 1.00
0: 414 ¥ 075 n 075
e S—Y M @
® 0.50 ® 0.50
& 025 i 025
A 000 0.00
100 1.00
© 075 ™~ 075
9 9
L S 050 £ 050
° 2 4 6 8 & 025 & 025
0.00 0.00
0123456789 0123456789

7- | 8
d B Rating Transtion Threshots

© [ . *
3 .
5- LR | L] H
z .
2 g .
& [ . T : g
& 073 N
£ 3 H
5 3- - o= " - & B
£ S H
)| HI)
-
3 -
. : T T . T
——— -10 eriods






_images/scatterplot2.png
Entity Transitions Plot

50 -
40 -
30 -
20-
10-
0-

10

Entity

IS





_images/single_entity.png
a1e15

Y

Time





_images/scale_conversions.png
Some Basics

The States of our starting scale: ['0', '1', '2', '3, '4', '5', ‘6, L e, 10']

The State Labels: ['ARA', 'AA', 'A’, 'BBB', 'BB', 'B, 'CCC', 'CC', 'C , 'S/’

The Full Description: [('0', 'AMA'), (‘1', 'AA"), ('2', 'A'), ('3', 'BBB'), ('4', 'BB'), ('5', 'B), ('6
e, (7, e, (e, e, (‘9 R, (1o, so/)i

Convert labels to other rating scales scales

Convert data to other scales

Tnput SEP Labels
['AA" 'BB' 'CC' 'AA' 'CC' 'BB' 'BB' 'CCC' 'SD/D' 'AA' 'CC' 'BE' 'R'
'C’ 'S)/D 'SD/D ‘83" 'A' 'C' 'BB 'AA' 'BB' 'CCC' 'R' 'CC''A' T
'83' '8' 'B' 'BEB' 'SD/D' 'A' 'AAA' 'C' 'AA' 'SD/D' 'CCC' 'R 'CCC' 'CC'
'8' 'BB' 'BBR' 'BEE' 'SD/D' 'CC' 'A' 'A' 'CC' 'BEB' 'AA' 'BB' 'SD/D
TAA' TC''CC''A UAMA''C’ 'BBB' 'R 'B' 'B' 'CC' 'AA' 'BEB AR’ 'AA'
'C''C’ AR’ 'BEB' 'AMA' 'BEB' 'BEB' 'R’ 'BB' 'BEB' 'CC' 'A' 'B' 'A'
'CCC' 'AAA' 'CC' 'SD/D' 'BBB' 'A' 'BBB' 'BB' 'CC’ 'AA' 'B' 'C’ 'AA' 'BEB'
R

Output COS Labels:

[ I T T :
af, 1, el e, e, e, 27, e, st s, el e, 2!, e, 1 e, e, e, e,
ter, U5, 3, U3 3 U6, 6, 2, 12, e, U3 LY, A e, UL e, 6, (2, L N6, 3,
o By Fy By Wy 5y W Wy Ty (G Wy By W S 5, Gl A 5 G 2 5
B N I L P D






_images/scatterplot.png
Entity

100 -

80 -

60 -

40 -

20-

Entity Transitions Plot





_static/ajax-loader.gif





_images/transition_probabilities.png
00
75
50
25

00
00

75
50
25
00
00
75
50
25

00
00

75
50
25
00

Multi-period Transition Probabilities

TO0

075
£ 050






_static/Architecture_Overview.png
trausitionMatrix

Pre-Processing || > Estimation Post-Processing
Goneral Use Cose | | Dot Format Transformations " Cohort Methods " Matrix Algebra "
Data Generators o Duration Methods o Infinitesimal Generators o
Statistics Visualization
Predefined Seales " Credit Curves " Fixing Rating Matrices i

Credit Ratings

Mappiugs between Scales

Multiperiod Migrations






